FINAL ANSWERS:
- B
- ABC
- AB
- C
y′′+4y=7sin(2x) k2+4=0:k=±2i⟹yc=c1cos(2x)+c2sin(2x) y⟹y′⟹y′′=Axsin(2x)+Bxcos(2x)=(B+2Ax)cos(2x)+(A−2Bx)sin(2x)=4(A−Bx)cos(2x)−4(B+Ax)sin(2x) (4A)cos(2x)+(−4B−8Ax)sin(2x)=(0)cos(2x)+(7)sin(2x) {A=0B=−47⟹yp=−47xcos(2x) y=c1cos(2x)+c2sin(2x)−47xcos(2x)
y′′−y′−30y=0 k2−k−30=0=(k+5)(k−6):k=−5,6⟹yc=c1e−5x+c2e6x W=6ex+5ex⟺Wronskian=11ex
y′′+y=sin2x k2+1=0:k=±i⟹yc=c1sinx+c2cosx W=−(sin2x+cos2x)=−1,f(x)=sin2x u1=−∫Wy2f(x)=∫y2f(x)=(cosx)(sin2x) u2=∫Wy1f(x)=−∫y1f(x)=−sin3x yp=0
CORRECTION:
yp=32−31sin2x=32−31(1−cos2x)=31+31cos2xx2y′′+11xy′+9y=0:Cauchy-Euler m2+10m+9=0=(m+9)(m+1):m=−9,−1⟹yc=c1x−9+c2x−1 W=−x−11+9x−11=8x−11,f(x)=0 yp=y2∫Wy1f(x)−y1∫Wy2f(x)=x−1∫8x−11x−9f(x)−x−9∫8x−11x−1f(x)=0