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ALGEBRAIC STRUCTURES




WHAT ARE ALGEBRAIC STRUCTURES?

[ Algebraic Structure ]

Set [ Identities/Axioms ]




WHY ALGEBRAIC STRUCTURES?

Algebraic Structures

m Algebra can help to reveal how things are built.

m Algebraic structures help us to understand what different
mathematical objects have in common, and what the
important differences are.

m Algebraic structures allow us to understand things more
abstractly.

m Abstraction is a powerful tool because it allow us to
understand all sorts of things in full generality.




MODULE STRUCTURE

Module structure

m Chapter 1: Groups
m Chapter 2: Rings (including integral domains and fields)
m Chapter 3: Applications to polynomial rings

m Chapter 4: Field extensions




GROUP THEORY

About Group Theory

m Groups are key to modern mathematics,

m Group Theory is the branch of mathematics that studies
groups.

m Group Theory is a strong-point of algebraic research in Lincoln
School of Mathematics and Physics.







Today:

m Groups

m Direct products




GROUPS




GROUPS

In mathematics, Groups are precise mathematical objects (not
just any group in common language).

Example: Transformations of a square (as a rigid figure)

the centre O:
m 0,907, 180", and 270"

-T - - - 7T - There are four reflexions:

B : C There are four rotations around
|
|

N m vertical and horizontal,

|
| m two diagonal reflexions.

A D

These eight elements form the group of isometries Dg of a square.




GROUPS

Example: The integers Z

z={...,-2,—-1,0,1,2,...}.
We know the following four things about Z:

1. If we take two elements x and y of Z, x + y is also in Z,
(Z is closed)

2. if you add 3 integers together, whether you initially sum the
first two or the last two doesn’t matter, (Z is associative)

3. adding 0 to any integer doesn’t change that integer,
(0 is an identity element)

4. for each integer, there is another integer which when added to
the first integer brings you back to 0.
(Every elements has an inverse)

This means that Z with addition + forms a group.



GROUPS

A group is a set G together with an operation * such that all of
the following holds.

1. Closure: If x,y € G, then x %y is also in G.
2. Associativity: If z,y, z € G, then

rx(yxz)=(T*y)* 2.

3. Existence of identity element: We can find an element
e € (G satisfying

exx=xxe=ux, forall z € G.

4. Existence of inverse elements: If z € G, we can find y € G
such that

TxY=yY*xxT =e.




GROUPS

Example: Transformations of a square (as a rigid figure)

the centre O:
m 0,90, 180", and 270"

- 7T - There are four reflexions:

B : C There are four rotations around
|
|
|

| . .

p NN m vertical and horizontal,
|
T

A D

These eight elements form the group of isometries Dg of a square.

m two diagonal reflexions.

This is called the Dihedral group of order 8.



GROUPS

Example: Transformations of a square (as a rigid figure)

What is the operation in Dg?

B | C
N Given two transformations 14
N | 7/
N and 7T5:
oo |
RN T1 * TQ = TlTQ = apply Tl, and
4 o then apply T5.
7
|

A D

For instance, if @ = (anticlockwise) rotating 90°, then

a® = axa = rotating 180"

a” =e,

where e denotes the initial position.




GROUPS

Example: Transformations of a square (as a rigid figure)

B ! C Dyg is closed: Let
N . | b
S0 a = (anticlockwise) rotating 90
p X " b = vertical reflection .

Where does a*b send A? And B?

A D

AS DS A so A A
axb

B% A% D, so BESD.
Thus, a * b is the diagonal reflection in AC.



GROUPS

Example: Transformations of a square (as a rigid figure)

B I C Another product: Again
N 8 | b
S0 a = (anticlockwise) rotating 90"
p A " b = vertical reflection .

Where does b*a send A? And B?

A D

AL DS 0, s0o AZYSC
bxa

B C% B, so BESB.

Thus, a * b is the diagonal reflection in BD =—> a*b # b * a!l




GROUPS

Example: Transformations of a square (as a rigid figure)

A

Then

D

Associativity:
ax(Bx7) = (axpB)x7.
This rule is satisfied by Ds.

Existence of identity
element: Denote

e = the rotation by 0.

Txe=T=exT,

This means that e is the identity element.



GROUPS

Example: Transformations of a square (as a rigid figure)

Existence of inverse:

B ! C a = (anticl.) rotating 90,
I
| a® = (anticl.) rotating 270 .

|

s D axa® = (anticl.) rotating 360"
|

A D =e.

Thus, a® is the inverse of a, and a is the inverse of a?.

Similarly, for b = vertical reflection , we have

bxb=e, thatis, bisits own inverse.




GROUPS

Example: Transformations of a square (as a rigid figure)
We conclude that Dg
B i C m is close under x,
|

m is associative,

N O m has an identity element e,

T XK o1 - and

[
y PN m has inverse elements for
| all its elements.
T

A D This means that Dg is a group.




NOTATION

Warning! Multiplication: a x b, a - b, ab, ...

We write group operations as follows.
m Often: a*b,

m Often: ab,

m Sometimes: a-b, a+b, a®b, a®b,...

Inverse elements

Inverse of a € G is often denoted by:

m —a, (additive notation),

m o !. (multiplicative notation)




NOTATION

Identity element

m Most often: e,
m Often (in the literature): 1 or 1 (to specify the group),

m Sometimes: 0 (in additive notation).




RECOGNIZING GROUPS/NON-GROUPS

Is the following a group?

N=1{1,2,3,...} with +

No! Because no element has an inverse!

Is the following a group?

G = {black, white} ~ with % = mixing colours.

No! Because
black * white = gray

is not an element of G.

That is, G is not closed under .




RECOGNIZING GROUPS/NON-GROUPS — PART 2

Is the following a group?

Z=A{...,-2,-1,0,1,2,...} with +.
Yes! We checked it on slide 17.

Is the following a group?

Z=A{...,—2,—-1,0,1,2,...} with multiplication.
No! No element other than —1 and 1 has an inverse.

For instance, there is no x € Z such that

21 = 1| = 72,



RECOGNIZING GROUPS/NON-GROUPS — PART 3

Is the following a group?

27 = {2z | z € Z} = { even numbers } with +.
To show that 2Z is a group: must show all group axioms.

Closed with + : Two elements of 27 are of the form 2z; and 229
with 21, z0 € Z. Thus

221 + 229 = 2(2’1 aF ZQ) € 27
because z1 + 29 € Z.
Associativity: We know that Z is associative, that is

(a+b)+c=a+ (b+c), for all a,b,c € Z,

thus 27 C Z also is.




RECOGNIZING GROUPS/NON-GROUPS — PART 4

Is the following a group?

27 = {2z | z € Z} = { even numbers } with +.

Identity element: Notice that
0=2-0€2Z
because 0 € Z. Moreover, for all 2z € 27Z, it holds

224+ 0=22=0+ 2z.

Thus, 0 is the identity element.




RECOGNIZING GROUPS/NON-GROUPS — PART 5

Is the following a group?

2Z = {2z | z € Z} = { even numbers } with +.

Inverse element: Given 2z € 27 we know that
—2z=2(—2) € 2Z
because —z € Z. Thus, —2z is an element in 27 satisfying
22+ (=22) = 0= (—2z) + 2=.

Hence, —2z is the inverse of 2z.




RECOGNIZING GROUPS/NON-GROUPS — PART 6

Is the following a group?

{22+ 1|z € Z} = { odd numbers } with +.

To show that something is not a group: must only show that one
group axiom fails.

In this case, 3 and 5 are odd number. However,

3+ 5 = 8 is not odd.

Thus, the set of odd numbers is not closed under 4, and hence it
is not a group.




DIRECT PRODUCT




DIRECT PRODUCT

Definition /Proposition

Let G and H be groups (with opration given in multiplicative
notation).
The direct product of G and H is a group G x H, given by

GxH={(g,h) |g€G,heH}
and operation

(91, 1) - (92, h2) = (9192, h1h2).

We must show that G x H is in fact a group!

But first, let us see examples of direct products.




EXAMPLE OF DIRECT PRODUCT: Z X Z,

We know that Z is a group, thus we can take

Zx7Z={(a,b) | a,beZ}.

An example of two elements and their product is:

(1,2)-(0,5) = (140,245)=(1, 7).

Remark: We could also write

(1,2)+(0,5) = (140, 2+5) = (1, 7).



EXAMPLE OF DIRECT PRODUCT: Z X Dxg

We know that Dg is the group of symmetries of a square. So, we
can consider

Z x Dg = {(z,y) | z € Z,y € Dg}.

Two examples of pairs of elements and their products are:
(0, a)- (7, 0®) = (047, axa®) = (7, a*),
(_17 b) ’ (51 b) = (_1 + 95, bx* b) = (41 b2) = (47 6).

Remark. Notice that, since the two groups have different
operations, we need to use different operations in the first and the

second entry.




PROOF THAT G x H IS A GROUP

Let us now show that the direct product of two (arbitrary) groups
is a group.

Closed:

Given (g1, h1) and (g2, h2) in G x H, we must show that their
product is also in G' X H.

(g91,h1) - (92, h2) = (9192, h1h2) € G x H

because G and H are groups, thus g1go € G and hihs € H.




PROOF THAT G x H IS A GROUP

Associative:

Since G and H are associative, we have g1(g293) = (9192)g3 and
hi(hah3) = (h1h2)hs. Thus,

(91, h1)((g2, h2) (g3, h3)) = (91, h1) (9293, hahs)
= (91(9293), h1(hahs))
= ((9192)g3, (h1h2)hs3)

= (9192, h1h2)(g3, h3)

((91, h1)(g2, h2)) (g3, h3)-




PROOF THAT G x H IS A GROUP

Identity element:

Let eq and ep be the identity elements of G and H, respectively.
Then,
(9, h)(eq, en) = (gea, hen)
- (gv h)

and

(ea,en)(g,h) = (ecy,enh)
= (9,h)
Thus, (eq, em) is the identity element of G x H.




PROOF THAT G x H IS A GROUP

Inverse elements:

Let (g,h) € G x H.
We must find (¢/,h') € G x H such that

(9, h)(g', 1) = (ec,en) = (¢',h)(g, D).
Since G is a group and g € G, there exists g~! € G. That is,

g9 ' =ec=9""g.

Similarly, we can find A~ € H, such that hh™' = e = h~'h.

Then,
(9, m) (g~ h™Y) = (997", hh ™)
= <6G7 eH)
= (g~ R Y)(g, )




PROOF THAT G x H IS A GROUP

Inverse elements (continuation):

Thus, (g~1, A1) is the iverse of (g, h).

One can write

(g:h) " =(g"",n ).




PROOF THAT G x H IS A GROUP

Proof that G' x H is a group
Since G x H

m is closed under multiplication,
m is associative,
m has identity element (eg,ep), and

m has inverse for each of its elements,

we conclude, G X H is a group.




NEXT LECTURE

Exercises before next lecture

m Practical 1: Question 1.1 (items (a) to (f)).

Next time...

m Abelian groups,

m uniqueness of identity and inverse elements.
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