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Algebraic structures



What are algebraic structures?

Algebraic Structure

Set Operation(s) Identities/Axioms
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Why algebraic structures?

Algebraic Structures

Algebra can help to reveal how things are built.

Algebraic structures help us to understand what di�erent
mathematical objects have in common, and what the
important di�erences are.

Algebraic structures allow us to understand things more
abstractly.

Abstraction is a powerful tool because it allow us to
understand all sorts of things in full generality.
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Module structure

Module structure

Chapter 1: Groups

Chapter 2: Rings (including integral domains and �elds)

Chapter 3: Applications to polynomial rings

Chapter 4: Field extensions
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Group Theory

About Group Theory

Groups are key to modern mathematics,

Group Theory is the branch of mathematics that studies
groups.

Group Theory is a strong-point of algebraic research in Lincoln
School of Mathematics and Physics.
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Week 1



Week 1: Goals

Today:

Groups

Direct products
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Groups



Groups

In mathematics, Groups are precise mathematical objects (not
just any group in common language).

Example: Transformations of a square (as a rigid �gure)

There are four rotations around
the centre O:

0°, 90°, 180°, and 270°.

There are four re�exions:

vertical and horizontal,

two diagonal re�exions.

These eight elements form the group of isometries D8 of a square.
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Groups

Example: The integers Z

Z = {. . . ,−2,−1, 0, 1, 2, . . . }.

We know the following four things about Z:
1. If we take two elements x and y of Z, x+ y is also in Z,

(Z is closed)

2. if you add 3 integers together, whether you initially sum the
�rst two or the last two doesn't matter, (Z is associative)

3. adding 0 to any integer doesn't change that integer,
(0 is an identity element)

4. for each integer, there is another integer which when added to
the �rst integer brings you back to 0.
(Every elements has an inverse)

This means that Z with addition + forms a group.

7 33



Groups

De�nition.

A group is a set G together with an operation ∗ such that all of
the following holds.

1. Closure: If x, y ∈ G, then x ∗ y is also in G.

2. Associativity: If x, y, z ∈ G, then

x ∗ (y ∗ z) = (x ∗ y) ∗ z.

3. Existence of identity element: We can �nd an element
e ∈ G satisfying

e ∗ x = x ∗ e = x, for all x ∈ G.

4. Existence of inverse elements: If x ∈ G, we can �nd y ∈ G
such that

x ∗ y = y ∗ x = e.
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Groups

Example: Transformations of a square (as a rigid �gure)

There are four rotations around
the centre O:

0°, 90°, 180°, and 270°.

There are four re�exions:

vertical and horizontal,

two diagonal re�exions.

These eight elements form the group of isometries D8 of a square.

This is called the Dihedral group of order 8.
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Groups

Example: Transformations of a square (as a rigid �gure)

What is the operation in D8?

Given two transformations T1

and T2:

T1 ∗ T2 = T1T2 = apply T1, and

then apply T2.

For instance, if a = (anticlockwise) rotating 90°, then

a2 = a ∗ a = rotating 180°

a4 = e,

where e denotes the initial position.
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Groups

Example: Transformations of a square (as a rigid �gure)

D8 is closed: Let

a = (anticlockwise) rotating 90°

b = vertical re�ection .

Where does a∗ b send A? And B?

A
a7−→ D

b7−→ A, so A
a∗b7−−→ A.

B
a7−→ A

b7−→ D, so B
a∗b7−−→ D.

Thus, a ∗ b is the diagonal re�ection in AC.
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Groups

Example: Transformations of a square (as a rigid �gure)

Another product: Again

a = (anticlockwise) rotating 90°

b = vertical re�ection .

Where does b∗a send A? And B?

A
b7−→ D

a7−→ C, so A
b∗a7−−→ C.

B
b7−→ C

a7−→ B, so B
b∗a7−−→ B.

Thus, a ∗ b is the diagonal re�ection in BD =⇒ a ∗ b ̸= b ∗ a!!
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Groups

Example: Transformations of a square (as a rigid �gure)

Associativity:

α ∗ (β ∗ γ) = (α ∗ β) ∗ γ.

This rule is satis�ed by D8.

Existence of identity

element: Denote

e = the rotation by 0°.

Then
T ∗ e = T = e ∗ T,

This means that e is the identity element.
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Groups

Example: Transformations of a square (as a rigid �gure)
Existence of inverse:

a = (anticl.) rotating 90°,

a3 = (anticl.) rotating 270°.

Thus,

a ∗ a3 = (anticl.) rotating 360°

= e.

Thus, a3 is the inverse of a, and a is the inverse of a3.

Similarly, for b = vertical re�ection , we have

b ∗ b = e, that is, b is its own inverse.
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Groups

Example: Transformations of a square (as a rigid �gure)

We conclude that D8

is close under ∗,
is associative,

has an identity element e,
and

has inverse elements for
all its elements.

This means that D8 is a group.
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Notation

Warning! Multiplication: a ∗ b, a · b, ab, . . .
We write group operations as follows.

Often: a ∗ b,

Often: ab,

Sometimes: a · b, a+ b, a⊙ b, a⊗ b, . . .

Inverse elements

Inverse of a ∈ G is often denoted by:

−a, (additive notation),

a−1. (multiplicative notation)
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Notation

Identity element

Most often: e,

Often (in the literature): 1 or 1G (to specify the group),

Sometimes: 0 (in additive notation).
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Recognizing groups/non-groups

Is the following a group?

N = {1, 2, 3, . . . } with +

No! Because no element has an inverse!

Is the following a group?

G = {black,white} with ∗ = mixing colours.

No! Because
black ∗ white = gray

is not an element of G.

That is, G is not closed under ∗.
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Recognizing groups/non-groups � part 2

Is the following a group?

Z = {. . . ,−2,−1, 0, 1, 2, . . . } with + .

Yes! We checked it on slide 17.

Is the following a group?

Z = {. . . ,−2,−1, 0, 1, 2, . . . } with multiplication.

No! No element other than −1 and 1 has an inverse.

For instance, there is no x ∈ Z such that

2x = 1 = x2.
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Recognizing groups/non-groups � part 3

Is the following a group?

2Z = {2z | z ∈ Z} = { even numbers } with + .

To show that 2Z is a group: must show all group axioms.

Closed with + : Two elements of 2Z are of the form 2z1 and 2z2
with z1, z2 ∈ Z. Thus

2z1 + 2z2 = 2(z1 + z2) ∈ 2Z

because z1 + z2 ∈ Z.

Associativity: We know that Z is associative, that is

(a+ b) + c = a+ (b+ c), for all a, b, c ∈ Z,

thus 2Z ⊂ Z also is.
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Recognizing groups/non-groups � part 4

Is the following a group?

2Z = {2z | z ∈ Z} = { even numbers } with + .

Identity element: Notice that

0 = 2 · 0 ∈ 2Z

because 0 ∈ Z. Moreover, for all 2z ∈ 2Z, it holds

2z + 0 = 2z = 0 + 2z.

Thus, 0 is the identity element.
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Recognizing groups/non-groups � part 5

Is the following a group?

2Z = {2z | z ∈ Z} = { even numbers } with + .

Inverse element: Given 2z ∈ 2Z we know that

−2z = 2(−z) ∈ 2Z

because −z ∈ Z. Thus, −2z is an element in 2Z satisfying

2z + (−2z) = 0 = (−2z) + 2z.

Hence, −2z is the inverse of 2z.
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Recognizing groups/non-groups � part 6

Is the following a group?

{2z + 1 | z ∈ Z} = { odd numbers } with + .

To show that something is not a group: must only show that one
group axiom fails.

In this case, 3 and 5 are odd number. However,

3 + 5 = 8 is not odd.

Thus, the set of odd numbers is not closed under +, and hence it
is not a group.
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Direct product

De�nition/Proposition

Let G and H be groups (with opration given in multiplicative
notation).
The direct product of G and H is a group G×H, given by

G×H = {(g, h) | g ∈ G, h ∈ H}

and operation

(g1, h1) · (g2, h2) = (g1g2, h1h2).

We must show that G×H is in fact a group!

But �rst, let us see examples of direct products.
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Example of direct product: Z× Z

Example

We know that Z is a group, thus we can take

Z× Z = {(a, b) | a, b ∈ Z}.

An example of two elements and their product is:

(1, 2) · (0, 5) = (1 + 0, 2 + 5) = (1, 7).

Remark: We could also write

(1, 2) + (0, 5) = (1 + 0, 2 + 5) = (1, 7).
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Example of direct product: Z×D8

Example

We know that D8 is the group of symmetries of a square. So, we
can consider

Z×D8 = {(x, y) | x ∈ Z, y ∈ D8}.

Two examples of pairs of elements and their products are:

(0, a) · (7, a2) = (0 + 7, a ∗ a2) = (7, a3),

(−1, b) · (5, b) = (−1 + 5, b ∗ b) = (4, b2) = (4, e).

Remark. Notice that, since the two groups have di�erent
operations, we need to use di�erent operations in the �rst and the
second entry.
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Proof that G×H is a group

Let us now show that the direct product of two (arbitrary) groups
is a group.

Closed:

Given (g1, h1) and (g2, h2) in G×H, we must show that their
product is also in G×H.

(g1, h1) · (g2, h2) = (g1g2, h1h2) ∈ G×H

because G and H are groups, thus g1g2 ∈ G and h1h2 ∈ H.
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Proof that G×H is a group

Associative:

Since G and H are associative, we have g1(g2g3) = (g1g2)g3 and
h1(h2h3) = (h1h2)h3. Thus,

(g1, h1)((g2, h2)(g3, h3)) = (g1, h1)(g2g3, h2h3)

= (g1(g2g3), h1(h2h3))

= ((g1g2)g3, (h1h2)h3)

= (g1g2, h1h2)(g3, h3)

((g1, h1)(g2, h2))(g3, h3).
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Proof that G×H is a group

Identity element:

Let eG and eH be the identity elements of G and H, respectively.

Then,
(g, h)(eG, eH) = (geG, heH)

= (g, h)

and
(eG, eH)(g, h) = (eGg, eHh)

= (g, h)

Thus, (eG, eH) is the identity element of G×H.
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Proof that G×H is a group

Inverse elements:

Let (g, h) ∈ G×H.

We must �nd (g′, h′) ∈ G×H such that

(g, h)(g′, h′) = (eG, eH) = (g′, h′)(g, h).

Since G is a group and g ∈ G, there exists g−1 ∈ G. That is,

gg−1 = eG = g−1g.

Similarly, we can �nd h−1 ∈ H, such that hh−1 = eH = h−1h.
Then,

(g, h)(g−1, h−1) = (gg−1, hh−1)

= (eG, eH)

= (g−1, h−1)(g, h)
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Proof that G×H is a group

Inverse elements (continuation):

Thus, (g−1, h−1) is the iverse of (g, h).

One can write
(g, h)−1 = (g−1, h−1).
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Proof that G×H is a group

Proof that G×H is a group

Since G×H

is closed under multiplication,

is associative,

has identity element (eG, eH), and

has inverse for each of its elements,

we conclude, G×H is a group.
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Next lecture

Exercises before next lecture

Practical 1: Question 1.1 (items (a) to (f)).

Next time...

Abelian groups,

uniqueness of identity and inverse elements.
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