MTH2003 Complex Analysis Notes 3

LAPLACE'S EQUATION AND HARMONIC FUNCTIONS

Definition Let w:D =R ,where D s an open subset of R'and Ulx,y)

'S twice di{ferentiable.—ﬁxe function U s called harmonic function

¢ Vi = 93U , U =o
0x? oy?

2
VU is called the La.placian of W and the above equation
LaPlace’s equation.
® Laplace's €C1uation rises natuvally in a wide range of Problems,

2q. heat conduction ) gluid {low .

I_e’c )(:D—> C be an anc«L\/J{\c covnplex fuvn&ion on

ProposiTion
on open subset D of € and f=uriv (u=Ref, v=Im}) .

lhen W and v are harmonic.
Proq.: Since fis analytic = U,V satisfy the Cauchy-P;eanV\ equations:

U _ 3V
9y = Aax

du _ 9JV and
3 x =4
We cliffereﬂkiqtf, them with respect to x and y accocdingly:
DV ond  BU __ Vv
3y’ OxdY

S0 by adding the above equations,

U _
dx?  IYox

2 2
It holds that 3V _ 9V
3Ydx OXay

we find:
2 2 . . .
dWU + OU -0 , Le. Was harmonic .

ox? ay*
Wikh a Similar argument we {ind thar V is also harmonic (Vxx“‘\/y\/ =0).




Page 2

—> lhe real ond the 'umajinarg Parts of L=U+rV jn the

previous proposition are called harmonic Conj'ugates.

T UMy = x=y° and Vi4y) = 2xy {from +the last exawple are

harwmonic conjugates of €ach other according +o +he Pproposition,

since. U=Ref, v=TIn{ ,where f is +he analytic function:
J((z\zzz.

Ee/mglkz Cauchy “Riemann €QUA LI ONS L.MFly that an analy ¢ funceion

can be determined by its real part only (or its imaginary part only).

Je_ emark: We can easily 3C'ur\cl Pairs of real two -Variable functions
9,(’%’); ﬂz(x,\b Which are harmonic ConJuSates of each oher,

from the real and the '|W\aj'mar3 parts of analyt+ic

. 3 .
C omFlex J\AY\C-UOV\SJ €.9. 5(2): v z%-37 41 , Sinz, e+c.

— Tke Cauchy -Kiemann Tl;eorem imPl{es that the derivative

of an analytic gumchon at Zo 1S :

]f/(Zo) = 9W 4 9V - Q_}_: (see the PrOOf o;: C-R theorem for x—>Xc>
9x 9% Ix

but also

Flza= 3w _jav . 1 af

!
oy 9y i3

~X

(Proof o{i C-R theorem for )l_> )6)
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Cauchy -Riemann in polar coordinates

”; convert the Cauc\r\\/—?iemann equations to polar forwr, we use the chain
rule for uxy) and V(%) .
U _ duIx , U IY
9r 09x gr Oy Jr

(same for V(%))
W _ dw dx , 9w Y

90 ox g8 9oy 906

In poLar coordinates X =rcosd , Y= rS'me) and there :(-ore .

Uy = dw _ du Cos® + o Sind

or oX oy )
’L(e:a_u =% rSing + U | cos0

90 ox

ond simlarly,
Vpz OV = OV (o5 + oV

ov_ =~ sind
or oX oy
Vo= Vv :_a_Vrs'm9+a—v rcosO
" 90  ox 0

\l\/e will express \/r,va’m terms of Uy, Up by 'u.sinﬂ
the C-R equations Ux = Vy | Vx=-WUy !

()
Vi = Uy CosB+ UxSMO = Uy sind —uycosd = - L Ueg
: (%)
Vo = Uyrsmb + Uxrcosh = r (U Cosd + Uy Sin9)= r Ur
and W short ©+  Qw _ 1 9V , 9¥Y -1 0u
r r 26 or r o6



DIFFERENTIATION OF BASIC COMPLEX FUNCTIONS

\l\'e exPcmd the C\iscussiovx on dif}erem&at—low o]( covnplex yunCtions.

We start by the expovential funcion:

fz([——>(1:
flz)=e*

lo determine that e’ is analgﬁc) we sShow that the real and

imag'marg parts are harmonic Cov\;\u%cues.

Sn'm,oly , €z= exw =g ez e’(cos\/ +isim/)
so U(x,y) = e¥cosy =Re(e?

and v(x,y) = exs'my = Im(e*) .

To verify the Cauchy -Riemann equations | we fiest find the partial defivatives:

a_\k_ _—_(ex)éos): = e,x c‘osy
3 } su _ av
v 2

9V = ex(S\'m/),= e"ccs\/ 7

oy

ou — ex(Cosy)/=-exsiny

Y }th_éz
’ oy X

BV - (€ siny= e'siny

X

z . . : : :

So € is analytic and iis derivative s df = +idv (Caudny-Riewmann
X X z dz X X
if_:_QCosy +i€siny =€ .

Theo rewm’ Proo{-)
dz

— de‘l- 2 .
lhis is the ful\ proo f why Tz__e . Based on this and on d‘\ﬁeremiahovx rules we
differentiate Combinations Of funcions :

u 4
d(+z 1) _ 2e*%4) , d€) _y3e” , e
dz dz




Page 5

_I-F\e logqri,thm [see also the last 2 pages of notes 1]

he lot.]a.r:'t—hm Is an inverse of z-ev.

wsz=lnz
not defined on the whole plane C as e” but on C\{o}.
f.€\oy— C
_S(z)-_- Inz
We can re-write Z= e“‘_’ M its polar Sorw
z:r&lﬁnzmﬁ for 0<D<z2n, KeZ .

to express the logarithwt in polar coordinates
W= lnz =lnr +10 + 2Kk}

The; logqr{ thw. can taKe an infinite number of \ara\luuzsJ Since K con take an
an infinite Number of values Thus the Loaa.n'bhw\ is @ mulii-valued funcﬁon.
- Ie is ofren usejul to restrice multi-valued functions so that they become single- valued.
o F:C_Jr K=0  we have the Principal. value of the iosarithm.
= lo vesiict lnz ond make it a Single -valued function, we need the Concept

of @ branch point:if we perform G Complete circuit around a closed path in €,

that includes a branch Po’mt of {fz): lnz.

QIEY), / o -
A <% after a closed circuit aromnd 0, B is inceased by 2.
k ® argz is a discontivuous function, sO

* Llnz=lnz2l + iarg Z cannot be difftremiab\-e.

vy A -
= d
DO{.PT:";:PG omant on S whole domain ([\TO].

e l.nz \s oma\y»‘ic and %B: _"_z_ on D =resivicred domain on which
7
there is a Single-valued branch of lnz.

o Pv“inCipal_ branch : for 0¢0¢2m or -TMeO¢T
Ffor -m¢®<¢m : D=C\ fx+iy : X¢0 and y:o]
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(hz is analytic and dlnz _ |
dz Z

We show that the resiricied logarichm (single-valued for v=o)

(.VIZ = lnr+ 10 (in polar coocdinates)
[F— ) —
U V(o)

The (auchy -Riemanw equations in polar form

d

c

J
r r 9

|

?_l./ ) a&:—ra.\_/
20 or

o
(]

are Satisfiecl since Ur=ir)\/e=\ ond. Up=V¢=0.

Then,
dlnz _ 9u ,; 3v . UL + i 20
dz = x X v IX o0 ax
= _l— a—-r ¥ 1._33.
r ax oX
Since = ‘Vx"+y" we get or — = X
- YN
0= fan(l)
X
ahd @Q. - = _i
X r2
)—\ence)the derivative is
dlnz _ x iy _ Z -\
dz ~ vz rz ~ lzlz( z

(vemember that ZZ =12|%)

15 analytic,
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The Square root fuv\cuon {(z) /z

/ A .f C— (L 1s a mulsi-valued funcrion

\/ S=21 < r2 3 ez

Z”' 1s defined as the nverse of z®. So let Z = —w>

we will then Solve. it In terms of W Z.""2

Let w= Qeq’and z=ve? tken re =P e_t"(\) which yields
2 21
that |re |- lFe cflor P:r . From (1), € %Lt g O+2un = 2, KeZ .
F: v e
=4 T
1 = '627*““, keZ and W=Z"2=f’dcf= (2 BT ), keZ
0 ( +'n)
.l_{- also means that (2 chomogs from r ‘ez , k=0 to - e'lz k=)
; Il2 l(_-r‘n')__ lh v -
which s r'%e = f' e 2z - exacily the opposite
YA of s oﬂgmaL value (r=0).
f;
S © . ,
s > " ® The ofigin is a branch point of 2
Q X
" l—\owe.vcf, if we loop around a closed curve that
does not convain  the oriﬁin ,then O Lies in o rvestricred
range [91_ 61:1 and Ceturns 40 kS oriﬂinat value a]qer one Circuit.
L +inz
® We can weire fa= z*- e* ,where we Know that Lnz is single-valued and

onalytic o its principal branch witn domain D= C\?XH\/ P X0, \/:0}.

. e : . ;
=% |herejore 7" is analytic on D and its derivative is:

+nz LU
dz'* . det =(J.an)’ i -
dz dz 2

(]
Z?:

RQW\GY‘K 2 IV\ 3eneral.’ Zq', aclR s anal\{-l-ic on the domain
T —
D= C\ixﬁ\/ * X¢0, y=0)

ond _d_i': az™"
dz
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Irigonom erric Funcrions
_|T\e Sine and. Cosine )(unchov\s are defined on the whole complex plane.

) iz ) r
¢ have that S\nz:m—_‘ an cosz:'z+—‘z
We h h e-e A e, e
2 2

By the basic properties o4 di ffecentiation

. . 2 , . Ly
dswnz= i (exz—_e ): 1 dﬁ‘z_ delz): e‘z+e‘ - COSZ
dz dz 2 21\dz dz 2 -
and : : ) : : - .
dcosz=d (e‘z 3 e-\z) = 1 (de‘z+ délz) :ielz'eﬂz —_e-€°_ _sinz
dz dz 2 2 \dz ' dz I T

Remarkz _ﬁ\e inverse o} Sinz ond cosz are Mulsi—valued ‘S\Av\c-\ions.
NN

\/\]e can Calcu\one. k‘ne\r mverses in the same way as {-or the real
h\/Pefbol'\c_ functions.
W -iw W =W
\.e+ Z = CosW = (it + € _Tl:en 22 = € €
2 W W
oY e, 120

The roots of this quaclrmic. expression In t&fms of ew ave.

eiW: 2z '.".('-IZZ—L\)l/i Z + (22_\)1/2
2
or w(2)= Lln (z + (22-\),/2) ,

L

Howeverl W(2) is multi-valued becaunse i+ is Compcsed b\j the
Logan'k\«m ond the square root fumcti ow.
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SO, the inverse 04 the cosine function

cos(2)= l_l.ln (Z + (2%~ \)’/2)

\s also a mulii -valued function, which can become s'mg\e-valued

when '(‘€Striciecl,.50~r example | on s Pr\ncipql branch when v=0 °
1
cos ()= !_ln(z + (zz-\)/z)
L

and in that domain , the hegative root is excluded.

2

EXAM?LE Find a domain whece fzy=V2+1" is analytic.
(Also called the analyi—ici{-y dOmQ'm).

Since an  analyricity domain -for m, weQ is:
Du= @\ xriy - x2o0, y:o}
an analy+icity domain &or YZri s
Dz = C \?ze(f - Re(z+N<¢0, I_m(z-n\:o)_
S;nce, Zyl= (1) +i Yy, we have Relzr)=x+ and Im(z+y=y.
Hence |
oy Dzz ([\?m—iy - Xe-Ll y-.:o)
/ the analyncil—\/ domain o4
Vz+1

i o >

-1 7 X




COMPLEX INTEGRATION

Ohne 0f the wost Important theorems in Complex integration is the
so-called Cauchys Theorem. But before sraing nistheorem, we
Lirst define the Contour integrals.

ln the complex plane, we can integratre along Curves. Let
Xi[a,b]CRQ(E
Y = X iy

be a smooih path in C.

° On A& smooth path ¥(¢), Xft) IS Cohtinuous,

* Recall thae- paths can be added (q+y2), out also can be splined.

Definition A contour ¥ 1S a CoNEIMUOUS path 6=[a,b]—>¢ .

“The path y is called piecewise Continuous if we can splie

the interval [a,b] o o finite mumber of subintervals
Q:z09 < AL .- LAp=b

where
}&\0\\\ 5(5)/7 AlLol Gzl ...LGn=lb
%(W I ;TR N
- X (q“_b X(avh

Such that 25'&) exists on €ach subinterval (ai,ain) and is

continuous on Eai, Cti.H].

e A CONNtOUr Consists og. a Siv\ite. number Oj. commected smooth curves.

X
A R S L
re K}\ >
¥z By
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The Contour '\V\tegra\
-
\\\(’. '\m-egmk a\owa a piecewise contour ¥ of a CONTINUOUS -yumc‘ﬁovx
S(z) is defined to be

b
gf(z)dz = S f(d(ﬂ) ZS/(th’c >
) a

where we have converted +he im—esraL over Z 1ntd an ntegral over t.

ProPe.rtie.s of the contovr inregral

o S[x]((z‘npj(z)]c\z :oéjgcz)dzwsjf)(z)dz , &P Constanis
c c

C

° °§§(Z)‘\Z: Y.S.(z)c\z , where —C denoies the opposite Fa\%f\r\.
C -C

Zf\*ﬁ'z
. 5 f(z) dz = jf(z)dz + | f2dz — N -
htla J) 82 d ¥2
b b
S £ (e yode| < SH(X(M -|5’(t)‘ de
o o,

Definition The arc Lenﬂth of a curve ¥:labl— C,
YO =A@)+y ) is  defined by

b

b
Lop = J ly'e) de = Jﬁ('m)ﬂ(y'm)z dt

¢ |he arc length of the unit circle is equal to 2.

(25:[0,21‘]—> Q;) 2‘ (+) = e't n po\ar Coordinates )



