MTH2003M Complex Analysis

1. For each sequence below, find $f(z) = \lim_{n \to \infty} f_n(z)$, and show that the sequence is uniformly convergent to f(z) for $|z| \le 1$:

(a)
$$f_n(z) = 1 + \frac{z}{n}$$
, $n = 1, 2,...$ (b) $f_n(z) = 2z + \frac{3z^2}{n}$ for $n = 1, 2,...$

2. Given that the *p*-series $\sum_{n} \frac{1}{n^{p}}$ converges for p > 1, show that the series

$$\sum_{n=1}^{\infty} \frac{z^{n+1}}{n^6\sqrt{2+n}}$$

converges uniformly for |z| < 1.

3. Show that the sequences below converge uniformly in the given regions $(\alpha \in \mathbb{R} \text{ is a constant})$:

a)
$$f_n(z) = \frac{1}{nz^2}, \ 0 < \alpha \le |z| < \infty$$
 b) $f_n(z) = \frac{1}{z^n}, \ 1 < \alpha \le |z| < \infty$

Would your answer to a) be different with the interval $0 < |z| < \infty$?

4. Show that the following series converge uniformly in the given regions ($R \in \mathbb{R}$ is a constant):

a)
$$\sum_{n=1}^{\infty} z^n$$
, $0 \le |z| < R$, $R < 1$ b) $\sum_{n=1}^{\infty} e^{-nz}$, $R < \operatorname{Re} z \le 1$, $R > 0$

5. Find the radius of convergence of each of the following series:

a)
$$\sum_{n=1}^{\infty} \frac{z^n}{n}$$
 b) $\sum_{n=1}^{\infty} \frac{n}{2^n} z^n$ c) $\sum_{n=1}^{\infty} (\cos in) z^n$

Practical 5