MTH2003M Complex Analysis

1. By attempting to calculate the limit $\lim_{\Delta z \to 0} [f(z + \Delta z) - f(z)] / \Delta z$ with Δz purely real and then with Δz purely imaginary, show that f(z) = Im z is not differentiable anywhere.

2. Confirm that the function whose real and imaginary parts are given by

$$u(x,y) = \sin x \cosh y$$
 and $v(x,y) = \cos x \sinh y$

satisfies the Cauchy-Riemann equations for all z.

- 3. Find the harmonic conjugate v(x,y) of each of the following functions, and find the analytic function f(z) of which u and v are the real and imaginary parts:
 - (a) $u(x,y) = e^{-x} \cos y$ (b) $u(x,y) = y^2 x^2$ (c) $u(x,y) = \frac{y}{x^2 + y^2}$
- 4. Confirm that the functions whose real and imaginary parts are given below satisfy the Cauchy-Riemann equations on the regions specified, and write each function as a function of *z* only.

(a)
$$u(x,y) = x^3 - 3xy^2$$
; $v(x,y) = 3x^2y - y^3$ for all $z \in \mathbb{C}$
(b) $u(x,y) = x/(x^2 + y^2)$; $v(x,y) = -y/(x^2 + y^2)$ for $x^2 + y^2 \neq 0$

- 5. Use the Cauchy-Riemann equations to show that the following are not differentiable anywhere:
 - (a) f(z) = Im(z) (b) f(z) = |z| (c) $f(z) = \arg(z)$
- 6. Find the values of *z* for which the following functions satisfy the Cauchy-Riemann equations:

(a)
$$w = z^2$$
 (b) $w = |z|^2$

- 7. A function is defined as $f(z) = \ln r + i\theta$ for $-\pi / 2 < \theta < \pi / 2$.
 - (a) Convert this function to Cartesian coordinates.
 - (b) Show that it satisfies the Cauchy-Riemann equations for all z such that $\operatorname{Re} z > 0$.

Practical 2