MTH2003M Complex Analysis

Practical 1

- 1. Write each of the following complex numbers in exponential form:
 - (a) -1 (b) -i (c) 1+i (d) $\frac{1}{2} + \frac{\sqrt{3}}{2}i$ (e) $\frac{1}{2} \frac{\sqrt{3}}{2}i$
- 2. Write each of the following complex numbers in the form *a* + *bi*, where *a* and *b* are real:
 - (a) $e^{2+i\pi/2}$ (b) $\frac{1}{i}$ (c) $\frac{1}{1+i}$ (d) $(1+i)^3$ (e) |3+4i|
- 3. Sketch the following regions in the complex plane, using full lines for boundaries that are included in the region and dashed lines for boundaries that are excluded:
 - (a) $|z| \le 1$ (b) |2z+1+i| < 4 (c) $\operatorname{Re} z \ge 4$ (d) $|z| \le |z+1|$ (e) $0 < |2z-1| \le 2$ (f) $\pi/4 < \arg z \le 3\pi/4$
- 4. Show that, for two complex numbers z and w, $\overline{z+w} = \overline{z+w}$ and $\overline{zw} = \overline{zw}$.
- 5. Show that, for any complex number *z*,

$$\operatorname{Re}(z) = \frac{1}{2}(z+\overline{z})$$
 and $\operatorname{Im}(z) = \frac{1}{2i}(z-\overline{z})$.

Use your result to express the equation of the line x + 3y = 2 in terms of z and \overline{z} .

- 6. Find the three cube roots of *i*, writing your answers in exponential, polar and standard form.
- 7. Solve for the roots of the following equations, writing your answers in exponential form:

(a)
$$z^3 = 4$$
 (b) $z^4 = -1$ (c) $z^4 + 2z^2 + 2 = 0$

8. Solve the equation $(az + b)^3 = c$, where *a*, *b* and *c* are real, positive constants.

	0	π/6	π/4	π/3	π/2
sin	0	1/2	1/ √2	√3 / 2	1
cos	1	√3 / 2	1/ √2	1/2	0
tan	0	1/√3	1	$\sqrt{3}$	*