SLIDES WEEK 20

ALGEBRAIC STRUCTURES

PAULA LINS

LECTURE SLIDES

UNIVERSITY OF LINCOLN

2024/25

Week 20: Goals

Last time:

■ Reminder: Rings, subrings, zero divisors and Integral Domains.

Today:

- New algebraic structures: Fields!
- Subfields
- Quick Subfield Theorem
- Homomorphism of rings, ID and fields

FIELDS

SUMMARY: GROUPS, RINGS, INTEGRAL DOMAINS AND FIELDS

Group G with operation *

${\bf Operation} \ *$						
	Closed	Associative	Identity	Inverse	Commutative	
Group	\checkmark	✓	✓	\checkmark	×	
Abelian Group	✓	✓	✓	✓	✓	

REMINDER: GROUPS, RINGS AND INTEGRAL DOMAINS

Ring R and integral domain D with operations + and *

${\bf Operation} + $						
	Closed	Associative	Zero	Commutative	Inverse	
Ring	\checkmark	✓	\checkmark	\checkmark	✓	
ID	\checkmark	✓	\checkmark	✓	✓	

${\bf Operation} \ *$						
	Closed	Associative	Unity	Commutative	Inverse	
Ring	\checkmark	✓	×	×	×	
ID	\checkmark	✓	\checkmark	✓	×	

(We also need that they are distributive, but this will be omitted.)

FIELDS CHECK ALL BOXES!

Fields tick all boxes!

${\bf Operation} + $						
	Closed	Associative	Zero	Commutative	Inverse	
Ring	\checkmark	✓	✓	\checkmark	✓	
ID	\checkmark	✓	✓	\checkmark	✓	
Field	\checkmark	✓	\checkmark	\checkmark	\checkmark	

${\bf Operation} \ *$						
	Closed	Associative	Unity	Commutative	Inverse	
Ring	\checkmark	✓	×	×	×	
ID	\checkmark	✓	✓	\checkmark	×	
Field	\checkmark	✓	\checkmark	\checkmark	\checkmark	

(We also need that they are distributive, but this will be omitted.)

EXAMPLES OF FIELDS

Examples of Fields

- \blacksquare \mathbb{C} , \mathbb{R} and \mathbb{Q} are fields,
- \blacksquare \mathbb{Z} is an integral domain but not a field.
 - $ightharpoonup \mathbb{Z}$ does not have multiplicative inverses.
- \blacksquare 2 \mathbb{Z} is a ring, but not an integral domain or a field.
 - \triangleright 2 \mathbb{Z} does not have unity.

Ċ

FORMAL DEFINITION

Definition

A field is a commutative ring in which the set of non-zero elements form a group with respect to multiplication.

In other words...

In other words, a set F with two operations + and * is called a **field** if:

- \blacksquare (F,+) is an abelian group,
- (F^*, \cdot) is an abelian group, (recall that $F^* = F \setminus \{0_F\}$)
- \blacksquare for all $x, y, z \in F$,

$$x * (y + z) = x * y + x * z$$
, and $(x + y) * z = x * z + y * z$.

Inclusions

Recall that Rings, ID and Fields satisfy all Abelian Group Axioms. They differ with respect to the following axioms:

${\bf Operation} \ *$						
	Closed	Associative	Unity	Commutative	Inverse	
Ring	\checkmark	✓	×	×	×	
ID	\checkmark	✓	\checkmark	\checkmark	×	
Field	✓	✓	✓	✓	✓	

Inclusions

The table above then shows that

Fields \subset Integral Domains \subset Rings.

FIELDS ARE INTEGRAL DOMAINS

Fields are Integral Domains

Technically, to show that fields are integral domains, we still need to show that fields do not have zero divisors.

Proof

Let F be a field. We need to show that if $x, y \in F$ are such that xy = 0, then either x = 0 or y = 0.

Without loss of generality, assume $x \neq 0$. Then $x^{-1} \in F$ because F is a field.

Consequently, by multiplying both sides of xy = 0 by x^{-1} , we obtain

$$0 = x^{-1}(xy) = (x^{-1}x)y = y.$$

SUBFIELDS

Subfields

Definition.

A subset K of a field F is a **subfield** of F if K is itself a field with respect to the operations on F.

Example

- \blacksquare \mathbb{Q} and \mathbb{Z} are subsets of \mathbb{R} .
- However, \mathbb{Q} is a field and \mathbb{Z} is not.
- Thus, \mathbb{Q} is a subfield of \mathbb{R} but \mathbb{Z} is not.

As for groups and rings, we have a quicker way of checking whether a subset is a subfield.

QUICK SUBFIELD THEOREM

Quick Subfield Theorem

Let F be a field and K a subset of F. Then K is a subfield of F if and only if

- 1. K contains the zero and the unity of F,
- 2. if $a, b \in K$ then a + b and ab belong to K,
- 3. if $a \in K$ then $-a \in K$,
- 4. if $a \in K$ and $a \neq 0$ then $a^{-1} \in K$.

Proof. It follows from similar arguments as for the Quick Subring theorem. You can find the proof in the Deep Dive Slides.

APPLICATION OF QST

Example: Gaussian Integers

Let is use the QSF Theorem to show that

$$\mathbb{Z}[i] = \{a + ib \mid a, b \in \mathbb{Z}\} \subset \mathbb{C}.$$

is **not** a subfield of C. It suffices to show that **one** condition fails.

4. Multiplicative inverse: Given $a + ib \in \mathbb{C}$, we have

$$(a+ib)^{-1} = \frac{1}{a^2 - b^2}(a-ib).$$
 (Exercise!)

For instance, $(1+i) \in \mathbb{Z}[i]$ has inverse

$$(1+i)^{-1} = \frac{1}{2}(1-i) = \frac{1}{2} - \frac{i}{2} \notin \mathbb{Z}[i].$$

Thus, $\mathbb{Z}[i]$ it is not a subfield of \mathbb{C} .

Application of QST - $\mathbb{Q}[i]$

Example: $\mathbb{Q}[i]$

What about

$$\mathbb{Q}[i] = \{a + ib \mid a, b \in \mathbb{Q}\} \subset \mathbb{C}?$$

Is this a subfield of \mathbb{C} ? We have that if $a + ib \in \mathbb{Q}[i]$, then its inverse is

$$(a+ib)^{-1} = \frac{1}{a^2 - b^2}(a-ib) = \frac{a}{a^2 - b^2} - i\frac{b}{a^2 - b^2} \in \mathbb{Q}[i]$$

because $\frac{a}{a^2-b^2}$ and $-\frac{b}{a^2-b^2}$ are rational numbers.

Thus, $\mathbb{Q}[i]$ satisfy the property of the QST that $\mathbb{Z}[i]$ does not.

Let us check the other three.

Application of QST - $\mathbb{Q}[i]$ - Part 2

Example: $\mathbb{Q}[i]$

1. $\mathbb{Q}[i]$ contains the zero and the unity of \mathbb{C} :

The zero of \mathbb{C} is 0. Let us show that this is an element of $\mathbb{Q}[i]$:

$$0 = 0 + 0i \in \mathbb{Q}[i]. \qquad (0 \in \mathbb{Q})$$

The unity of \mathbb{C} is 1. Let us show that this is an element of $\mathbb{Q}[i]$:

$$1 = 1 + 0i \in \mathbb{Q}[i]. \qquad (0, 1 \in \mathbb{Q})$$

Application of QST - $\mathbb{Q}[i]$ - Part 3

Example: $\mathbb{Q}[i]$

2. if $a, b \in \mathbb{Q}[i]$ then a + b and ab belong to $\mathbb{Q}[i]$:

Given a + bi and c + di in $\mathbb{Q}[i]$, we have

$$(a+bi) + (c+di) = (a+c) + i(b+d) \in \mathbb{Q}[i]$$
$$(a+bi) \cdot (c+di) = (ac-bd) + i(ad+bc) \in \mathbb{Q}[i]$$

because a + c, b + d, ac - bd, and ad + bc are rationals.

3. If $x \in \mathbb{Q}[i]$ then $-x \in \mathbb{Q}[i]$: Given $a + bi \in \mathbb{Q}[i]$, we have

$$-(a+bi) = -a + (-b)i \in \mathbb{Q}[i]$$

because $-a, -b \in \mathbb{Q}$.

FINITE INTEGRAL DOMAINS ARE FIELDS!

Theorem

Every finite integral domain is a field.

Proof.

Let D be an integral domain.

A field is an integral domain having inverses for all non-zero elements.

Thus, we must show that every non-zero $a \in D$ has an inverse.

Goal: Find $b \in D$ such that

$$a*b=e$$
.

PROOF OF THEOREM - PART 2

Proof.

Strategy: Define the map

$$\lambda: D \to D$$
 given by $\lambda(x) = a * x$.

- If we show that there exists $b \in D$ such that $\lambda(b) = e$, then we are done.
 - ▶ In fact, $\lambda(b) = e$ means a * b = e.
 - ightharpoonup That is equivalent to b being the inverse of a, as required.
- By definition, if λ is surjective, then there exists $b \in D$ such that $\lambda(b) = e$.
- It then suffices to show that λ is surjective.

Proof of theorem - Part 3

Fact.

If F is a **finite** set, then every mapping $F \to F$ is surjective if and only if it is injective.

Proof of Theorem - Part 3

■ Thus, it suffices to show that λ is **injective**.

Assume $\lambda(x) = \lambda(y)$. We must show x = y.

In fact, $\lambda(x) = \lambda(y)$ is equivalent to a * x = a * y.

Since multiplicative cancellation holds for integral domains, we have x = y as desired.

$$m * n = m * p \Longrightarrow n = p$$

Integers $\overline{\text{modulo } n}$

Corollary

 $\frac{\mathbb{Z}}{n\mathbb{Z}}$ is a field if and only if n is prime.

Proof.

We know that $\frac{\mathbb{Z}}{n\mathbb{Z}}$ is an integral domain if n is prime, and it is not an integral domain otherwise.

Since $\frac{\mathbb{Z}}{n\mathbb{Z}}$ is finite, by the previous theorem, if n is prime, then $\frac{\mathbb{Z}}{n\mathbb{Z}}$ is a field.

HOMOMORPHISM OF RINGS, ID AND FIELDS

RING HOMOMORPHISM

Definition

Let R and S be rings. A **ring homomorphism** from R to S is a mapping

$$\theta: R \to S$$

that satisfies:

$$\bullet$$
 $\theta(a+b) = \theta(a) + \theta(b)$, and

for all $a, b \in R$.

RING, INTEGRAL DOMAIN AND FIELD HOMOMORPHISMS

Remark

Recall that

Fields \subset Integral Domains \subset Rings.

Thus

- an integral domain homomorphism is just a ring homomorphisms between two integral domains.
- Similarly, a **field homomorphism** is just a **ring homomorphisms** between two fields.

EXAMPLES

Which of the following maps are ring homomorphisms?

1. $f: \mathbb{R} \to \mathbb{R}$ given by

$$f(x) = 4x$$
, for all $x \in \mathbb{R}$,

2. $g: \mathbb{Z}/6\mathbb{Z} \to \mathbb{Z}/6\mathbb{Z}$ given by

$$g(x) = \overline{4}x$$
, for all $x \in \mathbb{Z}/6\mathbb{Z}$.

SOLUTIONS

Solutions

1. $f: \mathbb{R} \to \mathbb{R}$ given by f(x) = 4x, for all $x \in \mathbb{R}$.

$$f(x + y) = 4(x + y) = 4x + 4y = f(x) + f(y).$$

 $f(xy) = 4(xy) = 4xy,$
 $f(x)f(y) = 4x4y = 16xy.$ χ

Thus, this is not a ring homomorphism!

2. $g: \mathbb{Z}/6\mathbb{Z} \to \mathbb{Z}/6\mathbb{Z}$ given by $g(x) = \overline{4}x$, for all $x \in \mathbb{Z}/6\mathbb{Z}$.

$$\begin{split} g(x+y) &= \overline{4}(x+y) = \overline{4}x + \overline{4}y = g(x) + g(y).\checkmark\\ g(xy) &= \overline{4}(xy) = \overline{4}xy,\\ g(x)g(y) &= \overline{4}x\overline{4}y = \overline{16}xy = \overline{4}xy. \quad \checkmark \end{split}$$

Thus, this is a ring homomorphism!

22

EXAMPLE OF RING HOMOMORPHISMS

Example.

The map $\theta: \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ given by

$$\theta(a) = \overline{a} \quad (\text{i.e. } a \mod n)$$

is a ring homomorphism.

In fact:

$$\bullet \theta(a+b) = \overline{a+b} = \overline{a} + \overline{b} = \theta(a) + \theta(b). \checkmark$$

$$\bullet \ \theta(ab) = \overline{ab} = \overline{a} \cdot \overline{b} = \theta(a)\theta(b), \checkmark$$

for all $a, b \in \mathbb{Z}$.

REMARK ABOUT THE PREVIOUS EXAMPLE

Remark.

In the previous example, we showed that the map $\theta: \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ given by

$$\theta(a) = \overline{a}$$
 (i.e. $a \mod n$)

is a ring homomorphism.

Now,

- \blacksquare \mathbb{Z} is an integral domain.
- If n is prime, $\mathbb{Z}/n\mathbb{Z}$ is an integral domain.
- We can conclude: If n is prime, then this map $\theta : \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ is an integral domain homomorphism.

Example of ring homomorphism: $\mathbb{R} \to M(2,\mathbb{R})$

Recall $M(2,\mathbb{R})$

Recall that

$$M(2,\mathbb{R}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c, d \in \mathbb{R} \right\}$$

is a ring with usual addition and multiplication of matrices.

Example of ring homomorphism $\mathbb{R} \to M(2, \mathbb{R})$

The map $\phi: \mathbb{R} \to M(2, \mathbb{R})$ given by

$$\phi(x) = \left(\begin{smallmatrix} 0 & 0 \\ x & x \end{smallmatrix} \right)$$

is a ring homomorphism.

Example of ring homomorphism: $\mathbb{R} \to M(2,\mathbb{R})$ - Part 2

Sum

$$\phi(x) + \phi(y) = \begin{pmatrix} 0 & 0 \\ x & x \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ y & y \end{pmatrix}$$
$$= \begin{pmatrix} 0 & 0 \\ x+y & x+y \end{pmatrix}$$
$$= \phi(x+y). \quad \checkmark$$

Mutiplication

$$\phi(x)\phi(y) = \begin{pmatrix} 0 & 0 \\ x & x \end{pmatrix} \begin{pmatrix} 0 & 0 \\ y & y \end{pmatrix}$$
$$= \begin{pmatrix} 0 & 0 \\ xy & xy \end{pmatrix}$$
$$= \phi(xy). \quad \checkmark$$

MORE EXAMPLES

More Examples

Are the following maps ring homomorphisms?

1. $f: \mathbb{R} \to \mathbb{R}$ given by f(x) = x + 2. Let us check:

$$f(x+y) = (x+y) + 2 = x + y + 2$$
, whereas $f(x) + f(y) = (x+2) + (y+2) = x + y + 4$.

Not a ring homomorphism.

2. $\mathbf{0}: \mathbb{R} \to \mathbb{R}$ given by $\mathbf{0}(x) = 0$, for all $x \in \mathbb{R}$. Let us check:

$$\mathbf{0}(x+y) = 0 = 0 + 0 = \mathbf{0}(x) + \mathbf{0}(y), \checkmark$$

 $\mathbf{0}(xy) = 0 = 0 \cdot 0 = \mathbf{0}(x)\mathbf{0}(y)\checkmark.$

This is a ring homomorphism. (Also an **integral domain homomorphism** and a **field homomorphism**.)

27

LET US PRACTICE!

Which of the following maps are ring homomorphisms?

1. $f: \mathbb{R} \to \mathbb{R}$ given by

$$f(x) = x^2$$
, for all $x \in \mathbb{R}$,

2. $\mathbf{1}: \mathbb{R} \to \mathbb{R}$ given by

$$\mathbf{1}(x) = 1$$
, for all $x \in \mathbb{R}$.

3. $g: M(2,\mathbb{R}) \to M(2,\mathbb{R})$ given by

$$g\left(\left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right)\right) = \left(\begin{smallmatrix} a & 0 \\ 0 & a \end{smallmatrix}\right).$$

SOLUTION OF 1

Solution

1. $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2$, for all $x \in \mathbb{R}$.

f can only be a ring homomorphism if

$$f(x+y) = f(x) + f(y)$$
$$f(xy) = f(x)f(y).$$

We have

$$f(x+y) = (x+y)^2 = x^2 + 2xy + y^2,$$

$$f(x) + f(y) = x^2 + y^2 \neq (x + y)^2$$
.

Thus, f is **not** a ring homomorphism.

SOLUTION OF 2

Solution

2. The map $\mathbf{1}: \mathbb{R} \to \mathbb{R}$ can only be a ring homomorphism if

$$\mathbf{1}(a+b) = \mathbf{1}(a) + \mathbf{1}(b)$$

 $\mathbf{1}(ab) = \mathbf{1}(a)\mathbf{1}(b).$

We have

$$\mathbf{1}(a+b) = 1$$
 and $\mathbf{1}(a) + \mathbf{1}(b) = 1 + 1 \neq 1$.

Thus, 1 is not a ring homomorphism.

SOLUTION OF 3

Solution

3.
$$g: M(2, \mathbb{R}) \to M(2, \mathbb{R})$$
 given by $g\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$.
$$g\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} x & y \\ z & w \end{pmatrix}\right) = g\left(\begin{pmatrix} a+x & b+y \\ c+z & d+w \end{pmatrix} = \begin{pmatrix} a+x & 0 \\ 0 & a+x \end{pmatrix}$$

$$g\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} x & y \\ z & w \end{pmatrix}\right) = g\left(\begin{pmatrix} ax+bz & ay+wz \\ cx+dz & cy+dw \end{pmatrix}\right) = \begin{pmatrix} ax+bz & 0 \\ 0 & ax+bz \end{pmatrix},$$
$$g\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) \cdot g\left(\begin{pmatrix} x & y \\ z & w \end{pmatrix}\right) = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} \cdot \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix} = \begin{pmatrix} ax & 0 \\ 0 & ax \end{pmatrix} \cdot \chi$$

 $= \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} + \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix} = g \begin{pmatrix} a & b \\ a & d \end{pmatrix} + g \begin{pmatrix} a & b \\ a & d \end{pmatrix} . \checkmark$

Not a ring homomorphism.

Properties of ring homomorphisms

Properties of ring homomorphisms

If $\theta: R \to S$ is a ring homomorphism, then

- $\theta(0_R) = 0_S$
- \bullet $\theta(-a) = -\theta(a)$ for all $a \in R$.

Proof.

1. Notice that

$$\theta(0_R) = \theta(0_R + 0_R) = \theta(0_R) + \theta(0_R).$$

Subtracting $\theta(0_R)$ from both sides gives

$$\theta(0_R) = 0_S.$$

2. Exercise!

NEXT LECTURE

Exercises before next lecture

Solve the following exercises before next lecture:

■ Practical 7: Question 7.1.

You can also attempt the following, for extra practice:

■ Practice question: Question 7.5.

Next tim<u>e...</u>

- Isomorphism of rings, ID and fields
- Isomorphic rings.