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WEEK 20: GOALS

m Reminder: Rings, subrings, zero divisors and Integral Domains.

Today:

m New algebraic structures: Fields!
m Subfields
m Quick Subfield Theorem

m Homomorphism of rings, ID and fields




FIELDS




SUMMARY: GROUPS, RINGS, INTEGRAL DOMAINS

AND FIELDS

Group G with operation x

Operation *

Closed | Associative | Identity | Inverse | Commutative

Group v v v v X
Abelian v Y Y v v
Group




REMINDER:
DOMAINS

GROUPS,

RINGS AND

INTEGRAL

Ring R and integral domain D with operations + and x

Operation + ‘

Closed | Associative | Zero | Commutative | Inverse
Ring v v v v v
ID v v v v v
Operation * |
Closed | Associative | Unity | Commutative | Inverse
Ring v v X X X
ID v v v v X

(We also need that they are distributive, but this will be omitted.)



FIELDS CHECK ALL BOXES!

Fields tick all boxes!

Operation +

Ring v v v v v
ID v v v v v
Field v v v v v

Ring v v X X X
1D v v v v X
Field v v v v v

(We also need that they are distributive, but this will be omitted.)




EXAMPLES OF FIELDS

Examples of Fields

m C, R and Q are fields,
m 7 is an integral domain but not a field.

» 7 does not have multiplicative inverses.

m 27 is a ring, but not an integral domain or a field.

» 27 does not have unity.




FORMAL DEFINITION

A field is a commutative ring in which the set of non-zero elements
form a group with respect to multiplication.

In other words...
In other words, a set F' with two operations + and * is called a
field if:

m (F,+) is an abelian group,
m (F*,.) is an abelian group, (recall that F'’* = F'\ {Or})
m for all z,y,z € F,

x*(y+z2)=xzxy+x*xz, and
(x+y)*xz=xxz+yx*z.



INCLUSIONS

Recall that Rings, ID and Fields satisfy all Abelian Group Axioms.
They differ with respect to the following axioms:

Operation *

Closed | Associative | Unity | Commutative | Inverse

Ring v v X X X
1D v v v v X
Field v v v v v

Inclusions

The table above then shows that

Fields C Integral Domains C Rings.




FIELDS ARE INTEGRAL DOMAINS

Fields are Integral Domains

Technically, to show that fields are integral domains, we still need
to show that fields do not have zero divisors.

Proof

Let F be a field. We need to show that if x,y € F' are such that
xy = 0, then either x = 0 or y = 0.

Without loss of generality, assume = # 0. Then 2~ ! € F because F'
is a field.

Consequently, by multiplying both sides of zy = 0 by ™!, we
obtain

0=a"Y(zy) = (e '2)y =y.




SUBFIELDS




SUBFIELDS

A subset K of a field F' is a subfield of F if K is itself a field with
respect to the operations on F'.

Example

m Q and Z are subsets of R.
m However, Q is a field and Z is not.
m Thus, Q is a subfield of R but Z is not.

As for groups and rings, we have a quicker way of checking whether
a subset is a subfield.



QUICK SUBFIELD THEOREM

Quick Subfield Theorem

Let F' be a field and K a subset of F'. Then K is a subfield of F' if
and only if

1. K contains the zero and the unity of F,
2. if a,b € K then a + b and ab belong to K,
3. ifa € K then —a € K,

4. ifa € K and a # 0 then a™! € K.

Proof. It follows from similar arguments as for the Quick Subring
theorem. You can find the proof in the Deep Dive Slides.




APPLICATION OF QST

Example: Gaussian Integers

Let is use the QSF Theorem to show that
Z[i|={a+1ib|a,beZ} CC.

is not a subfield of C. It suffices to show that one condition fails.

4. Multiplicative inverse: Given a + tb € C, we have

1

(CL =F ib)il = m

(a —1ib).  (Exercise!)

For instance, (1 +4) € Z[i] has inverse

Q+i) =20 —i)=7 & ¢ 2l

Thus, Z[i] it is not a subfield of C.



APPLICATION OF QST - Q[i]

Example: Q]

What about
Qij={a+ib]|a,beQ} CcC?
Is this a subfield of C? We have that if a + ib € Q[i], then its

inverse 1s

N 1 , a . b ,
(a + ib) lzm(a—zb):a2_62—za2_b2 € QJi]

because —z%> and _Tgb? are rational numbers.
Thus, Q[é] satisfy the property of the QST that Z[i] does not.

Let us check the other three.




APPLICATION OF QST - Q[i] - PART 2

Example: Q[]

1. Q[i] contains the zero and the unity of C:
The zero of C is 0. Let us show that this is an element of Q[é]:

0=0+0i € Q[i. (0 € Q)

The unity of C is 1. Let us show that this is an element of Q[i]:

1=1+0: € QJi. (0,1 €Q)




APPLICATION OF QST - Q[i] - PART 3

Example: Q[¢]
2. if a,b € Q[i] then a + b and ab belong to Q[i]:
Given a + bi and ¢ + di in Q[i], we have

(a+bi)+ (c+di) = (a+c)+i(b+d) € Q[i]
(a+bi) - (c+ di) = (ac — bd) + i(ad + be) € Q[i]

because a + ¢, b+ d, ac — bd, and ad + bc are rationals.

3. If x € Q[¢] then —z € Q[i]:
Given a + bi € Q[i], we have

—(a+bi) = —a+ (—b)i € Q[i]

because —a, —b € Q.




FINITE INTEGRAL DOMAINS ARE FIELDS!

Theorem

Every finite integral domain is a field.

Let D be an integral domain.

A field is an integral domain having inverses for all non-zero
elements.

Thus, we must show that every non-zero a € D has an inverse.

Goal: Find b € D such that

axb=ce.




PROOF OF THEOREM - PART 2

Strategy: Define the map

A:D — D given by A\x)=axzx.

m If we show that there exists b € D such that A\(b) = e, then we
are done.
» In fact, A(b) = e means a xb = e.
» That is equivalent to b being the inverse of a, as required.
m By definition, if A is surjective, then there exists b € D such
that \(b) = e.

m [t then suffices to show that A is surjective.




PROOF OF THEOREM - PART 3

If F' is a finite set, then every mapping F' — F is surjective if and
only if it is injective.

Proof of Theorem - Part 3

m Thus, it suffices to show that A is injective.
Assume A(x) = A(y). We must show = = y.

In fact, A(xz) = A(y) is equivalent to a * z = a * y.

Since multiplicative cancellation holds for integral domains, we
have x = y as desired. [




INTEGERS MODULO n

nZ—Z is a field if and only if n is prime.

We know that % is an integral domain if n is prime, and it is not
an integral domain otherwise.

Since % is finite, by the previous theorem, if n is prime, then nZ—Z is
a field. O




HOMOMORPHISM OF RINGS, ID
AND FIELDS




RING HOMOMORPHISM

Definition

Let R and S be rings. A ring homomorphism from R to S is a
mapping
0:R— S

that satisfies:
m 9(a+0b)=0(a)+6(b), and
m O(ab) = 6(a)0(b),

for all a,b € R.




RING, INTEGRAL DOMAIN AND
HOMOMORPHISMS

Remark
Recall that

Fields C Integral Domains C Rings.

Thus
m an integral domain homomorphism is just a ring

homomorphisms between two integral domains.

m Similarly, a field homomorphism is just a ring
homomorphisms between two fields.




EXAMPLES

Which of the following maps are ring homomorphisms?

1. f:R — R given by

f(x) =4z, for all z € R,

2. g:7Z/6Z — Z/6Z given by

g(x) = 4z, for all x € Z/6Z.




SOLUTIONS

1. f:R — R given by f(z) = 4z, for all z € R.

flz+y)=4(z+y) =4z +4y = f(z)+ f(y). v
f(zy) = 4(zy) = 4y,
f(x)f(y) = 4ody = 16zy. X

Thus, this is not a ring homomorphism!
2. g:Z/6Z — Z/6Z given by g(x) = 4z, for all x € Z/6Z.

Az +y) =4z +4y=g(x)+9(y).v
g(zy) = 4(xy) = 4zy,
= 4zdy = 162y = doy. v

Thus, this is a ring homomorphism!




EXAMPLE OF RING HOMOMORPHISMS

Example.

The map 6 : Z — Z/nZ given by

O(a) =a (i.e. @ mod n)

is a ring homomorphism.

In fact:
mla+b)=a+b=a+b=0(a)+0(b). v
m O(ab) =ab=1a-b=0(a)d(b), v

for all a,b € Z.




REMARK ABOUT THE PREVIOUS EXAMPLE

Remark.

In the previous example, we showed that the map 0 : Z — Z/nZ
given by
O(a)=a (i.e. a mod n)

is a ring homomorphism.

Now,

m Z is an integral domain.

m If n is prime, Z/nZ is an integral domain.

m We can conclude: If n is prime, then this map 0 : Z — Z/nZ is
an integral domain homomorphism.




EXAMPLE OF RING HOMOMORPHISM: R — M (2, R)

Recall M (2,R)

Recall that

M(2,R) {(gg) abyc,d € R}

is a ring with usual addition and multiplication of matrices.

Example of ring homomorphism R — M (2, R)

The map ¢ : R — M(2,R) given by

is a ring homomorphism.



EXAMPLE OF RING HOMOMORPHISM: R — M (2, R)
- PART 2

Mutiplication




MORE EXAMPLES

More Examples

Are the following maps ring homomorphisms?
1. f:R — R given by f(z) = x + 2. Let us check:
flz+y)=(r+y)+2=z+y+2, whereas
f@)+fy)=(@+2)++2) =z+y+4
Not a ring homomorphism.

2. 0: R — R given by 0(x) = 0, for all z € R. Let us check:
O(z+y)=0=0+0=0(z)+0(y),v
O(zy) =0=0-0=0(x)0(y)v.

This is a ring homomorphism. (Also an integral domain
homomorphism and a field homomorphism.)



LET US PRACTICE!

Which of the following maps are ring homomorphisms?

1. f:R — R given by

f(z) = 22, for all z € R,

2. 1:R — R given by

1(xz) =1, for all z € R.

3. g: M(2,R) - M(2,R) given by

g((¢2))=(82)-




SOLUTION OF 1

Solution
1. f:R — R given by f(z) = 22, for all z € R.

f can only be a ring homomorphism if

flxz+y) = fx)+ f(y)
flzy) = f(2)f(y)-

We have

flz+y) = (z+y)* =2+ 22y + ¢,

f@)+ fly) =2* + 9% # (x +y)*.

Thus, f is not a ring homomorphism.



SOLUTION OF 2

Solution

2. The map 1: R — R can only be a ring homomorphism if

1(a+b) =1(a) + 1(b)
1(ab) = 1(a)1(b).

We have

l(a+b)=1 and 1(a)+1(b)=1+1#1.

Thus, 1 is not a ring homomorphism.

30 . 33



SOLUTION OF 3

3. g: M(2,R) —» M(2,R) given byg((‘;Z)) = (82)

g((2)+ ) =g (s i) = (*F"ul)
= (50 + (5 =g (2h) +9(28) v
g((28) - 8) =g (i ares) = (5 W),
g((25) - 928N =(32)-(§2) = (¥ &) x

Not a ring homomorphism.



PROPERTIES OF RING HOMOMORPHISMS

Properties of ring homomorphisms

If0: R— S is aring homomorphism, then
m 0(0r) = Os,
m 0(—a) = —0(a) for all a € R.

1. Notice that
0(0r) = 6(0r + Or) = 0(0r) + 6(0r).
Subtracting 0(0r) from both sides gives

0(0R) = 0s.

2. Exercise!




NEXT LECTURE

Exercises before next lecture

Solve the following exercises before next lecture:
m Practical 7: Question 7.1.

You can also attempt the following, for extra practice:

m Practice question: Question 7.5.

m [somorphism of rings, ID and fields

m [somorphic rings.




	Fields
	Subfields
	Homomorphism of rings, ID and fields

