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Week 20: Goals

Last time:

Reminder: Rings, subrings, zero divisors and Integral Domains.

Today:

New algebraic structures: Fields!

Sub�elds

Quick Sub�eld Theorem

Homomorphism of rings, ID and �elds
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Fields



Summary: Groups, rings, integral domains

and fields

Group G with operation ∗

Operation ∗
Closed Associative Identity Inverse Commutative

Group ✓ ✓ ✓ ✓ ×
Abelian

✓ ✓ ✓ ✓ ✓
Group
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Reminder: Groups, rings and integral

domains

Ring R and integral domain D with operations + and ∗

Operation +

Closed Associative Zero Commutative Inverse

Ring ✓ ✓ ✓ ✓ ✓
ID ✓ ✓ ✓ ✓ ✓

Operation ∗
Closed Associative Unity Commutative Inverse

Ring ✓ ✓ × × ×
ID ✓ ✓ ✓ ✓ ×

(We also need that they are distributive, but this will be omitted.)
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Fields check all boxes!

Fields tick all boxes!

Operation +

Closed Associative Zero Commutative Inverse

Ring ✓ ✓ ✓ ✓ ✓
ID ✓ ✓ ✓ ✓ ✓
Field ✓ ✓ ✓ ✓ ✓

Operation ∗
Closed Associative Unity Commutative Inverse

Ring ✓ ✓ × × ×
ID ✓ ✓ ✓ ✓ ×
Field ✓ ✓ ✓ ✓ ✓

(We also need that they are distributive, but this will be omitted.)
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Examples of Fields

Examples of Fields

C, R and Q are �elds,

Z is an integral domain but not a �eld.

▶ Z does not have multiplicative inverses.

2Z is a ring, but not an integral domain or a �eld.

▶ 2Z does not have unity.
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Formal definition

De�nition

A �eld is a commutative ring in which the set of non-zero elements

form a group with respect to multiplication.

In other words...

In other words, a set F with two operations + and ∗ is called a

�eld if:

(F,+) is an abelian group,

(F ∗, ·) is an abelian group, (recall that F× = F \ {0F })
for all x, y, z ∈ F ,

x ∗ (y + z) = x ∗ y + x ∗ z, and

(x+ y) ∗ z = x ∗ z + y ∗ z.
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Inclusions

Recall that Rings, ID and Fields satisfy all Abelian Group Axioms.

They di�er with respect to the following axioms:

Operation ∗
Closed Associative Unity Commutative Inverse

Ring ✓ ✓ × × ×
ID ✓ ✓ ✓ ✓ ×
Field ✓ ✓ ✓ ✓ ✓

Inclusions

The table above then shows that

Fields ⊂ Integral Domains ⊂ Rings.
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Fields are Integral Domains

Fields are Integral Domains

Technically, to show that �elds are integral domains, we still need

to show that �elds do not have zero divisors.

Proof

Let F be a �eld. We need to show that if x, y ∈ F are such that

xy = 0, then either x = 0 or y = 0.

Without loss of generality, assume x ̸= 0. Then x−1 ∈ F because F
is a �eld.

Consequently, by multiplying both sides of xy = 0 by x−1, we

obtain

0 = x−1(xy) = (x−1x)y = y.
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Subfields



Subfields

De�nition.

A subset K of a �eld F is a sub�eld of F if K is itself a �eld with

respect to the operations on F .

Example

Q and Z are subsets of R.
However, Q is a �eld and Z is not.

Thus, Q is a sub�eld of R but Z is not.

As for groups and rings, we have a quicker way of checking whether

a subset is a sub�eld.

9 33



Quick Subfield Theorem

Quick Sub�eld Theorem

Let F be a �eld and K a subset of F . Then K is a sub�eld of F if

and only if

1. K contains the zero and the unity of F ,

2. if a, b ∈ K then a+ b and ab belong to K,

3. if a ∈ K then −a ∈ K,

4. if a ∈ K and a ̸= 0 then a−1 ∈ K.

Proof. It follows from similar arguments as for the Quick Subring

theorem. You can �nd the proof in the Deep Dive Slides.
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Application of QST

Example: Gaussian Integers

Let is use the QSF Theorem to show that

Z[i] = {a+ ib | a, b ∈ Z} ⊂ C.

is not a sub�eld of C. It su�ces to show that one condition fails.

4. Multiplicative inverse: Given a+ ib∈ C, we have

(a+ ib)−1 =
1

a2 − b2
(a− ib). (Exercise!)

For instance, (1 + i) ∈ Z[i] has inverse

(1 + i)−1 =
1

2
(1− i) =

1

2
− i

2
/∈ Z[i].

Thus, Z[i] it is not a sub�eld of C.
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Application of QST - Q[i]

Example: Q[i]

What about

Q[i] = {a+ ib | a, b ∈ Q} ⊂ C?

Is this a sub�eld of C? We have that if a+ ib ∈ Q[i], then its

inverse is

(a+ ib)−1 =
1

a2 − b2
(a− ib) =

a

a2 − b2
− i

b

a2 − b2
∈ Q[i]

because a
a2−b2

and − b
a2−b2

are rational numbers.

Thus, Q[i] satisfy the property of the QST that Z[i] does not.

Let us check the other three.
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Application of QST - Q[i] - Part 2

Example: Q[i]

1. Q[i] contains the zero and the unity of C:
The zero of C is 0. Let us show that this is an element of Q[i]:

0 = 0 + 0i ∈ Q[i]. (0 ∈ Q)

The unity of C is 1. Let us show that this is an element of Q[i]:

1 = 1 + 0i ∈ Q[i]. (0, 1 ∈ Q)
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Application of QST - Q[i] - Part 3

Example: Q[i]

2. if a, b ∈ Q[i] then a+ b and ab belong to Q[i]:

Given a+ bi and c+ di in Q[i], we have

(a+ bi) + (c+ di) = (a+ c) + i(b+ d) ∈ Q[i]

(a+ bi) · (c+ di) = (ac− bd) + i(ad+ bc) ∈ Q[i]

because a+ c, b+ d, ac− bd, and ad+ bc are rationals.

3. If x ∈ Q[i] then −x ∈ Q[i]:
Given a+ bi ∈ Q[i], we have

−(a+ bi) = −a+ (−b)i ∈ Q[i]

because −a, −b ∈ Q.
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Finite integral domains are fields!

Theorem

Every �nite integral domain is a �eld.

Proof.

Let D be an integral domain.

A �eld is an integral domain having inverses for all non-zero

elements.

Thus, we must show that every non-zero a ∈ D has an inverse.

Goal: Find b ∈ D such that

a ∗ b = e.
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Proof of Theorem - Part 2

Proof.

Strategy: De�ne the map

λ : D → D given by λ(x) = a ∗ x.

If we show that there exists b ∈ D such that λ(b) = e, then we
are done.

▶ In fact, λ(b) = e means a ∗ b = e.

▶ That is equivalent to b being the inverse of a, as required.

By de�nition, if λ is surjective, then there exists b ∈ D such

that λ(b) = e.

It then su�ces to show that λ is surjective.
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Proof of theorem - Part 3

Fact.

If F is a �nite set, then every mapping F → F is surjective if and

only if it is injective.

Proof of Theorem - Part 3

Thus, it su�ces to show that λ is injective.

Assume λ(x) = λ(y). We must show x = y.

In fact, λ(x) = λ(y) is equivalent to a ∗ x = a ∗ y.

Since multiplicative cancellation

m ∗ n = m ∗ p =⇒ n = p

holds for integral domains, we

have x = y as desired.
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Integers modulo n

Corollary

Z
nZ is a �eld if and only if n is prime.

Proof.

We know that Z
nZ is an integral domain if n is prime, and it is not

an integral domain otherwise.

Since Z
nZ is �nite, by the previous theorem, if n is prime, then Z

nZ is

a �eld.
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Homomorphism of rings, ID

and fields



Ring homomorphism

De�nition

Let R and S be rings. A ring homomorphism from R to S is a

mapping

θ : R → S

that satis�es:

θ(a+ b) = θ(a) + θ(b), and

θ(ab) = θ(a)θ(b),

for all a, b ∈ R.
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Ring, Integral Domain and field

homomorphisms

Remark

Recall that

Fields ⊂ Integral Domains ⊂ Rings.

Thus

an integral domain homomorphism is just a ring

homomorphisms between two integral domains.

Similarly, a �eld homomorphism is just a ring

homomorphisms between two �elds.
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Examples

Which of the following maps are ring homomorphisms?

1. f : R → R given by

f(x) = 4x, for all x ∈ R,

2. g : Z/6Z → Z/6Z given by

g(x) = 4x, for all x ∈ Z/6Z.
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Solutions

Solutions

1. f : R → R given by f(x) = 4x, for all x ∈ R.

f(x+ y) = 4(x+ y) = 4x+ 4y = f(x) + f(y). ✓

f(xy) = 4(xy) = 4xy,

f(x)f(y) = 4x4y = 16xy. χ

Thus, this is not a ring homomorphism!

2. g : Z/6Z → Z/6Z given by g(x) = 4x, for all x ∈ Z/6Z.

g(x+ y) = 4(x+ y) = 4x+ 4y = g(x) + g(y).✓

g(xy) = 4(xy) = 4xy,

g(x)g(y) = 4x4y = 16xy = 4xy. ✓

Thus, this is a ring homomorphism!
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Example of ring homomorphisms

Example.

The map θ : Z → Z/nZ given by

θ(a) = a (i.e. a mod n)

is a ring homomorphism.

In fact:

θ(a+ b) = a+ b = a+ b = θ(a) + θ(b). ✓

θ(ab) = ab = a · b = θ(a)θ(b), ✓

for all a, b ∈ Z.
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Remark about the previous example

Remark.

In the previous example, we showed that the map θ : Z → Z/nZ
given by

θ(a) = a (i.e. a mod n)

is a ring homomorphism.

Now,

Z is an integral domain.

If n is prime, Z/nZ is an integral domain.

We can conclude: If n is prime, then this map θ : Z → Z/nZ is

an integral domain homomorphism.
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Example of ring homomorphism: R → M(2,R)

Recall M(2,R)
Recall that

M(2,R) =
{(

a b
c d

) ∣∣∣∣a, b, c, d ∈ R
}

is a ring with usual addition and multiplication of matrices.

Example of ring homomorphism R → M(2,R)
The map ϕ : R → M(2,R) given by

ϕ(x) = ( 0 0
x x )

is a ring homomorphism.
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Example of ring homomorphism: R → M(2,R)
- Part 2

Sum

ϕ(x) + ϕ(y) = ( 0 0
x x ) +

(
0 0
y y

)
=

(
0 0

x+y x+y

)
= ϕ(x+ y). ✓

Mutiplication

ϕ(x)ϕ(y) = ( 0 0
x x )

(
0 0
y y

)
=

(
0 0
xy xy

)
= ϕ(xy). ✓
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More examples

More Examples

Are the following maps ring homomorphisms?

1. f : R → R given by f(x) = x+ 2. Let us check:

f(x+ y) = (x+ y) + 2 = x+ y + 2, whereas

f(x) + f(y) = (x+ 2) + (y + 2) = x+ y + 4.

Not a ring homomorphism.

2. 0 : R → R given by 0(x) = 0, for all x ∈ R. Let us check:

0(x+ y) = 0 = 0 + 0 = 0(x) + 0(y),✓

0(xy) = 0 = 0 · 0 = 0(x)0(y)✓.

This is a ring homomorphism. (Also an integral domain

homomorphism and a �eld homomorphism.)
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Let us practice!

Which of the following maps are ring homomorphisms?

1. f : R → R given by

f(x) = x2, for all x ∈ R,

2. 1 : R → R given by

1(x) = 1, for all x ∈ R.

3. g : M(2,R) → M(2,R) given by

g
((

a b
c d

))
= ( a 0

0 a ) .
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Solution of 1

Solution

1. f : R → R given by f(x) = x2, for all x ∈ R.

f can only be a ring homomorphism if

f(x+ y) = f(x) + f(y)

f(xy) = f(x)f(y).

We have

f(x+ y) = (x+ y)2 = x2 + 2xy + y2,

f(x) + f(y) = x2 + y2 ̸= (x+ y)2.

Thus, f is not a ring homomorphism.
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Solution of 2

Solution

2. The map 1 : R → R can only be a ring homomorphism if

1(a+ b) = 1(a) + 1(b)

1(ab) = 1(a)1(b).

We have

1(a+ b) = 1 and 1(a) + 1(b) = 1 + 1 ̸= 1.

Thus, 1 is not a ring homomorphism.
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Solution of 3

Solution

3. g : M(2,R) → M(2,R) given by g
((

a b
c d

))
= ( a 0

0 a ).

g
((

a b
c d

)
+ ( x y

z w )
)
= g

(
a+x b+y
c+z d+w

)
=

(
a+x 0
0 a+x

)
= ( a 0

0 a ) + ( x 0
0 x ) = g

(
a b
c d

)
+ g

(
a b
c d

)
.✓

g
((

a b
c d

)
· ( x y

z w )
)
= g

(
ax+bz ay+wz
cx+dz cy+dw

)
=

(
ax+bz 0

0 ax+bz

)
,

g
((

a b
c d

))
· g (( x y

z w )) = ( a 0
0 a ) · ( x 0

0 x ) = ( ax 0
0 ax ) .χ

Not a ring homomorphism.

31 33



Properties of ring homomorphisms

Properties of ring homomorphisms

If θ : R → S is a ring homomorphism, then

θ(0R) = 0S ,

θ(−a) = −θ(a) for all a ∈ R.

Proof.

1. Notice that

θ(0R) = θ(0R + 0R) = θ(0R) + θ(0R).

Subtracting θ(0R) from both sides gives

θ(0R) = 0S .

2. Exercise!
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Next lecture

Exercises before next lecture

Solve the following exercises before next lecture:

Practical 7: Question 7.1.

You can also attempt the following, for extra practice:

Practice question: Question 7.5.

Next time...

Isomorphism of rings, ID and �elds

Isomorphic rings.
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