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Detailed Slides

Deep Dive Slides

The Deep Dive Slides are essentially the same as the lecture

slides, but with added information for your convenience.

While the lectures come with my explanations, the slides do not.

So the Deep Dive Slides have some comments to make the slides

more self-contained to help you study independently.
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Week 20: Goals

Last time:

Reminder: Rings, subrings, zero divisors and Integral Domains.

Today:

New algebraic structures: Fields!

Sub�elds

Quick Sub�eld Theorem

Homomorphism of rings, ID and �elds

2 46



Fields



New algebraic strictures: Fields

Fields

Today we will learn (the last) algebraic structure: Fields!

Fields will be very important for us.

Basically, a �eld is ring (R,+, · ) such that (R,+) and (R×, · )
are both abelian groups.
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Next slides

Next slides

In the next slides, we will recall very brie�y what are the

axioms satis�ed by Groups, Abelian Groups, Rings and

Integral Domains.

We will then see that �elds are the last piece of the puzzle, i.e.

the algebraic structure that satisfy all axioms.

This will give you an intuition of what �elds are before seeing

the formal de�nition.
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Summary: Groups, rings, integral domains

and fields

Group G with operation ∗
The following table tells us which axioms Groups and Abelian

Groups, respectively, satisfy.

Operation ∗
Closed Associative Identity Inverse Commutative

Group ✓ ✓ ✓ ✓ ×
Abelian

✓ ✓ ✓ ✓ ✓
Group
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Reminder: Groups, rings and integral

domains

Ring R and integral domain D with operations + and ∗
The following tables tell us which axioms Rings and Integral

Domains (ID) satisfy with sum and with multiplication.

Operation +

Closed Associative Zero Commutative Inverse

Ring ✓ ✓ ✓ ✓ ✓
ID ✓ ✓ ✓ ✓ ✓

Operation ∗
Closed Associative Unity Commutative Inverse

Ring ✓ ✓ × × ×
ID ✓ ✓ ✓ ✓ ×

(We also need that they are distributive, but this will be omitted.)

6 46



Fields check all boxes!

Now, we add �elds to the tables and compare them to rings and

integral domains.

Fields tick all boxes!

Operation +

Closed Associative Zero Commutative Inverse

Ring ✓ ✓ ✓ ✓ ✓
ID ✓ ✓ ✓ ✓ ✓
Field ✓ ✓ ✓ ✓ ✓

Operation ∗
Closed Associative Unity Commutative Inverse

Ring ✓ ✓ × × ×
ID ✓ ✓ ✓ ✓ ×
Field ✓ ✓ ✓ ✓ ✓

(We also need that they are distributive, but this will be omitted.)
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Examples of Fields

Examples of Fields

Based on the tables of the previous slide, we can deduce the

following.

C, R and Q are �elds,

Z is an integral domain but not a �eld.

▶ Z does not have multiplicative inverses.

2Z is a ring, but not an integral domain or a �eld.

▶ 2Z does not have unity.
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Formal definition

We are now ready to de�ne �elds formally.

De�nition

A �eld is a commutative ring in which the set of non-zero elements

form a group with respect to multiplication.

In other words...

In other words, a set F with two operations + and ∗ is called a

�eld if:

(F,+) is an abelian group,

(F ∗, ·) is an abelian group, (recall that F× = F \ {0F })
for all x, y, z ∈ F ,

x ∗ (y + z) = x ∗ y + x ∗ z, and

(x+ y) ∗ z = x ∗ z + y ∗ z.
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Inclusions

Recall that Rings, ID and Fields satisfy all Abelian Group Axioms.

They di�er with respect to the following axioms:

Operation ∗
Closed Associative Unity Commutative Inverse

Ring ✓ ✓ × × ×
ID ✓ ✓ ✓ ✓ ×
Field ✓ ✓ ✓ ✓ ✓

Inclusions

The table above then shows that

Fields ⊂ Integral Domains ⊂ Rings.

See next slides for more explanations.
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Inclusions � More details

Operation ∗
Closed Associative Unity Commutative Inverse

Ring ✓ ✓ × × ×
ID ✓ ✓ ✓ ✓ ×
Field ✓ ✓ ✓ ✓ ✓

Assume (R,+) and (D,+) are abelian groups and that R and D
are distributive. From the previous table, we conclude:

(R,+, · ) is a ring if R tick the boxes closed, associative.

(D,+, · ) is an ID if D tick the boxes closed, associative,
commutative, and unity (and no zero divisors).

In particular, if D is an ID, then D tick the boxes closed,
associative (and distributive). So, D is a ring.

▶ This means that all integral domains are rings.
▶ The opposite is not true, because we can have a ring that is not

commutative, or has no unity.
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Inclusions � More details�Part 2

Operation ∗
Closed Associative Unity Commutative Inverse

Ring ✓ ✓ × × ×
ID ✓ ✓ ✓ ✓ ×
Field ✓ ✓ ✓ ✓ ✓

Similarly, �elds tick all Ring boxes and all Integral Domain
boxes.

▶ This means that all �elds are integral domains and rings.

▶ The opposite is not true, i.e. rings and integral domains are

not necessarily �elds; see examples in the next slide.
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Inclusions � More details�Part 3

Examples

2Z, Mat(2,R) and Z/6Z are rings that are not integral

domains (hence not �elds either).

Z, Z[x] and Z[i] are integral domains (hence rings) that are

not �elds.

Q, R and Z/pZ (p prime) are �elds (hence rings and integral

domains)

Recall:

Z[x] is the ring of polynomials with integer coe�cients.

Z[i] = {a+ ib | a, b ∈ Z} is called the ring of Gaussian integers.

Important: Check if you understand the examples above.

(E.g. Why is Z[i] an integral domain but not a �eld?)
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Fields are Integral Domains

Fields are Integral Domains

Technically, to show that �elds are integral domains, we still need

to show that �elds do not have zero divisors.

Proof

Let F be a �eld. We need to show that if x, y ∈ F are such that

xy = 0, then either x = 0 or y = 0.

Without loss of generality, assume x ̸= 0. Then x−1 ∈ F because F
is a �eld.

Consequently, by multiplying both sides of xy = 0 by x−1, we

obtain

0 = x−1(xy) = (x−1x)y = y.
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Subfields

Next slides: sub�elds and a new QST

In the next slides, we see the de�nition and some examples of

sub�elds.

Similarly to groups and rings, we say that a subset K ⊆ F is a

sub�eld of F whenever K is itself a �eld (with the same

operations as F ).

We will also see that, fortunately, there is a Quick Sub�eld
Theorem/Test (QST)that provides a faster way to

determine whether a subset is a sub�eld without needing to

verify all �eld axioms.
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Subfields

De�nition.

A subset K of a �eld F is a sub�eld of F if K is itself a �eld with

respect to the operations on F .

Example

Q and Z are subsets of R.
However, Q is a �eld and Z is not.

Thus, Q is a sub�eld of R but Z is not.

As for groups and rings, we have a quicker way of checking whether

a subset is a sub�eld.
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Quick Subfield Theorem

Quick Sub�eld Theorem

Let F be a �eld and K a subset of F . Then K is a sub�eld of F if

and only if

1. K contains the zero and the unity of F ,

2. if a, b ∈ K then a+ b and ab belong to K,

3. if a ∈ K then −a ∈ K,

4. if a ∈ K and a ̸= 0 then a−1 ∈ K.

Proof. It follows from similar arguments as for the Quick Subring
theorem. You can �nd the proof in the Deep Dive Slides.
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Proof of QST

Proof.

(⇐=) Let us show that, if K satis�es the conditions of the

theorem, then it is a �eld.

We know that a set K with two operations + and · is a �eld if

K is an abelian group with +,

K× is an abelian group with ·, and
F satis�es the distributive laws.

Recall the conditions of the Theorem:

1. K contains the zero and the unity of F ,

2. if a, b ∈ K then a+ b and ab belong to K,

3. if a ∈ K then −a ∈ K,

4. if a ∈ K and a ̸= 0 then a−1 ∈ K.
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Proof of QST - Part 2

Proof.

It follows from the Quick Subgroup theorem that (K,+) and
(K×, ·) are groups.

In particular,

(K,+) is abelian because (F,+) is abelian,

(K×, ·) is abelian because (F×, · ) is abelian,
K satis�es the distributive laws because so does F .

It follows that (K,+, ·) is a �eld.
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Proof of QST - Part 3

Proof.

(=⇒) Now we assume K is a sub�eld of F , and we must show that

1. K contains the zero and the unity of F ,

2. if a, b ∈ K then a+ b and ab belong to K,

3. if a ∈ K then −a ∈ K,

4. if a ∈ K and a ̸= 0 then a−1 ∈ K.

Which follows by the de�nition of �eld.
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Application of QST

Example: Gaussian Integers

Let is use the QSF Theorem to show that

Z[i] = {a+ ib | a, b ∈ Z} ⊂ C.

is not a sub�eld of C. It su�ces to show that one condition fails.

4. Multiplicative inverse: Given a+ ib∈ C, we have

(a+ ib)−1 =
1

a2 − b2
(a− ib). (Exercise!)

For instance, (1 + i) ∈ Z[i] has inverse

(1 + i)−1 =
1

2
(1− i) =

1

2
− i

2
/∈ Z[i].

Thus, Z[i] it is not a sub�eld of C.
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Application of QST - Q[i]

Example: Q[i]

What about

Q[i] = {a+ ib | a, b ∈ Q} ⊂ C?

Is this a sub�eld of C? We have that if a+ ib ∈ Q[i], then its

inverse is

(a+ ib)−1 =
1

a2 − b2
(a− ib) =

a

a2 − b2
− i

b

a2 − b2
∈ Q[i]

because a
a2−b2

and − b
a2−b2

are rational numbers.

Thus, Q[i] satisfy the property of the QST that Z[i] does not.

Let us check the other three.
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Application of QST - Q[i] - Part 2

Example: Q[i]

1. Q[i] contains the zero and the unity of C:
The zero of C is 0. Let us show that this is an element of Q[i]:

0 = 0 + 0i ∈ Q[i]. (0 ∈ Q)

The unity of C is 1. Let us show that this is an element of Q[i]:

1 = 1 + 0i ∈ Q[i]. (0, 1 ∈ Q)
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Application of QST - Q[i] - Part 3

Example: Q[i]

2. if a, b ∈ Q[i] then a+ b and ab belong to Q[i]:

Given a+ bi and c+ di in Q[i], we have

(a+ bi) + (c+ di) = (a+ c) + i(b+ d) ∈ Q[i]

(a+ bi) · (c+ di) = (ac− bd) + i(ad+ bc) ∈ Q[i]

because a+ c, b+ d, ac− bd, and ad+ bc are rationals.

3. If x ∈ Q[i] then −x ∈ Q[i]:
Given a+ bi ∈ Q[i], we have

−(a+ bi) = −a+ (−b)i ∈ Q[i]

because −a, −b ∈ Q.
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Next slides

Next slides

We will now show that every �nite integral domain is a �eld.

We have seen that a �eld is an integral domain having

(multiplicative) inverses for all non-zero elements.

So, we will show that if D is a �nite integral domain, then all

its non-zero elements have an inverse.

As a consequence, we will get immediately that Zn = Z/nZ is

a �eld if and only if n is prime.
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Finite integral domains are fields!

Theorem

Every �nite integral domain is a �eld.

Proof.

Let D be an integral domain.

A �eld is an integral domain having inverses for all non-zero

elements.

Thus, we must show that every non-zero a ∈ D has an inverse.

Goal: Find b ∈ D such that

a ∗ b = e.
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Proof of Theorem - Part 2

Proof.

Strategy: De�ne the map

λ : D → D given by λ(x) = a ∗ x.

If we show that there exists b ∈ D such that λ(b) = e, then we
are done.

▶ In fact, λ(b) = e means a ∗ b = e.

▶ That is equivalent to b being the inverse of a, as required.

By de�nition, if λ is surjective, then there exists b ∈ D such

that λ(b) = e.

It then su�ces to show that λ is surjective.
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Proof of theorem - Part 3

Fact.

If F is a �nite set, then every mapping F → F is surjective if and

only if it is injective.

Proof of Theorem - Part 3

Thus, it su�ces to show that λ is injective.

Assume λ(x) = λ(y). We must show x = y.

In fact, λ(x) = λ(y) is equivalent to a ∗ x = a ∗ y.

Since multiplicative cancellation

m ∗ n = m ∗ p =⇒ n = p

holds for integral domains, we

have x = y as desired.
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Integers modulo n

Corollary

Z
nZ is a �eld if and only if n is prime.

Proof.

We know that Z
nZ is an integral domain if n is prime, and it is not

an integral domain otherwise.

Since Z
nZ is �nite, by the previous theorem, if n is prime, then Z

nZ is

a �eld.
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Homomorphism of rings, ID

and fields



Ring homomorphisms

Ring homomorphisms

In Group Theory, a group homomorphism is a map φ : G → H
between groups G and H that preserves the group operations.

The same way, map between two rings φ : R → S is called a

ring homomorphism if it preserves the ring operations.

The di�erence is that rings have two operations, so both need

to be preserved.
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Ring homomorphism

De�nition

Let R and S be rings. A ring homomorphism from R to S is a

mapping

θ : R → S

that satis�es:

θ(a+ b) = θ(a) + θ(b), and

θ(ab) = θ(a)θ(b),

for all a, b ∈ R.
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Ring, ID and Field homomorphisms

Ring, ID and Field homomorphisms

Recall that integral domains and �elds are in particular rings,
but they have more axioms:

▶ Integral Domain (ID): Is a commutative ring with unity

that has no zero divisors.

▶ Field: Is a ring (F,+, · ) in which (F ∗, · ).1 is a multiplicative

group.

In the next slide, we will de�ne integral domain
homomorphisms and �eld homomorphisms.

They are simply ring homomorphisms, but between integral

domains and �elds, respectively.

1
Recall that F ∗ = F \ {0}.
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Ring, Integral Domain and field

homomorphisms

Remark

Recall that

Fields ⊂ Integral Domains ⊂ Rings.

Thus

an integral domain homomorphism is just a ring
homomorphisms between two integral domains.

Similarly, a �eld homomorphism is just a ring
homomorphisms between two �elds.
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Examples

Which of the following maps are ring homomorphisms?

1. f : R → R given by

f(x) = 4x, for all x ∈ R,

2. g : Z/6Z → Z/6Z given by

g(x) = 4x, for all x ∈ Z/6Z.
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Solutions

Solutions

1. f : R → R given by f(x) = 4x, for all x ∈ R.

f(x+ y) = 4(x+ y) = 4x+ 4y = f(x) + f(y). ✓

f(xy) = 4(xy) = 4xy,

f(x)f(y) = 4x4y = 16xy. χ

Thus, this is not a ring homomorphism!

2. g : Z/6Z → Z/6Z given by g(x) = 4x, for all x ∈ Z/6Z.

g(x+ y) = 4(x+ y) = 4x+ 4y = g(x) + g(y).✓

g(xy) = 4(xy) = 4xy,

g(x)g(y) = 4x4y = 16xy = 4xy. ✓

Thus, this is a ring homomorphism!
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Example of ring homomorphisms

Example.

The map θ : Z → Z/nZ given by

θ(a) = a (i.e. a mod n)

is a ring homomorphism.

In fact:

θ(a+ b) = a+ b = a+ b = θ(a) + θ(b). ✓

θ(ab) = ab = a · b = θ(a)θ(b), ✓

for all a, b ∈ Z.
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Remark about the previous example

Remark.

In the previous example, we showed that the map θ : Z → Z/nZ
given by

θ(a) = a (i.e. a mod n)

is a ring homomorphism.

Now,

Z is an integral domain.

If n is prime, Z/nZ is an integral domain.

We can conclude: If n is prime, then this map θ : Z → Z/nZ is

an integral domain homomorphism.
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Example of ring homomorphism: R → M(2,R)

Recall M(2,R)
Recall that

M(2,R) =
{(

a b
c d

) ∣∣∣∣a, b, c, d ∈ R
}

is a ring with usual addition and multiplication of matrices.

Example of ring homomorphism R → M(2,R)
The map ϕ : R → M(2,R) given by

ϕ(x) = ( 0 0
x x )

is a ring homomorphism.
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Example of ring homomorphism: R → M(2,R)
- Part 2

Sum

ϕ(x) + ϕ(y) = ( 0 0
x x ) +

(
0 0
y y

)
=

(
0 0

x+y x+y

)
= ϕ(x+ y). ✓

Mutiplication

ϕ(x)ϕ(y) = ( 0 0
x x )

(
0 0
y y

)
=

(
0 0
xy xy

)
= ϕ(xy). ✓
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More examples

More Examples

Are the following maps ring homomorphisms?

1. f : R → R given by f(x) = x+ 2. Let us check:

f(x+ y) = (x+ y) + 2 = x+ y + 2, whereas

f(x) + f(y) = (x+ 2) + (y + 2) = x+ y + 4.

Not a ring homomorphism.

2. 0 : R → R given by 0(x) = 0, for all x ∈ R. Let us check:

0(x+ y) = 0 = 0 + 0 = 0(x) + 0(y),✓

0(xy) = 0 = 0 · 0 = 0(x)0(y)✓.

This is a ring homomorphism. (Also an integral domain
homomorphism and a �eld homomorphism.)
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Let us practice!

Which of the following maps are ring homomorphisms?

1. f : R → R given by

f(x) = x2, for all x ∈ R,

2. 1 : R → R given by

1(x) = 1, for all x ∈ R.

3. g : M(2,R) → M(2,R) given by

g
((

a b
c d

))
= ( a 0

0 a ) .
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Solution of 1

Solution

1. f : R → R given by f(x) = x2, for all x ∈ R.

f can only be a ring homomorphism if

f(x+ y) = f(x) + f(y)

f(xy) = f(x)f(y).

We have

f(x+ y) = (x+ y)2 = x2 + 2xy + y2,

f(x) + f(y) = x2 + y2 ̸= (x+ y)2.

Thus, f is not a ring homomorphism.
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Solution of 2

Solution

2. The map 1 : R → R can only be a ring homomorphism if

1(a+ b) = 1(a) + 1(b)

1(ab) = 1(a)1(b).

We have

1(a+ b) = 1 and 1(a) + 1(b) = 1 + 1 ̸= 1.

Thus, 1 is not a ring homomorphism.
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Solution of 3

Solution

3. g : M(2,R) → M(2,R) given by g
((

a b
c d

))
= ( a 0

0 a ).

g
((

a b
c d

)
+ ( x y

z w )
)
= g

(
a+x b+y
c+z d+w

)
=

(
a+x 0
0 a+x

)
= ( a 0

0 a ) + ( x 0
0 x ) = g

(
a b
c d

)
+ g

(
a b
c d

)
.✓

g
((

a b
c d

)
· ( x y

z w )
)
= g

(
ax+bz ay+wz
cx+dz cy+dw

)
=

(
ax+bz 0

0 ax+bz

)
,

g
((

a b
c d

))
· g (( x y

z w )) = ( a 0
0 a ) · ( x 0

0 x ) = ( ax 0
0 ax ) .χ

Not a ring homomorphism.
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Properties of Homomorphisms

Key Properties

In the next slide, we will explore two very useful properties of

ring homomorphisms.

These properties are essential for proving results and

performing calculations e�ectively.
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Properties of ring homomorphisms

Properties of ring homomorphisms

If θ : R → S is a ring homomorphism, then

θ(0R) = 0S ,

θ(−a) = −θ(a) for all a ∈ R.

Proof.

1. Notice that

θ(0R) = θ(0R + 0R) = θ(0R) + θ(0R).

Subtracting θ(0R) from both sides gives

θ(0R) = 0S .

2. Exercise!
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Next lecture

Exercises before next lecture

Solve the following exercises before next lecture:

Practical 7: Question 7.1.

You can also attempt the following, for extra practice:

Practice question: Question 7.5.

Next time...

Isomorphism of rings, ID and �elds

Isomorphic rings.
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