SLIDES WEEK 19 Algebraic Structures

PAULA LINS

Lecture Slides

2024/25

WEEK 19: GOALS

Last time:

- Subrings,
- Quick Subring Theorem,
- Zero divisors and Integral Domains.

Today:

• Reminder: Rings, subrings, zero divisors and Integral Domains.

Reminder: Ring Theory

Rings

A ring is a set R with two operations (usually denoted by) + and \cdot satisfying:

- R with + is an abelian group,
- R is closed with respect to \cdot , (i.e. $a \cdot b \in R, \forall a, b \in R$)
- is associative: $(a \cdot b) \cdot c = a \cdot (b \cdot c),$
- For all $a, b, c \in R$, the **distributive laws** hold:

$$a \cdot (b+c) = a \cdot b + a \cdot c$$
, and $(a+b) \cdot c = a \cdot c + b \cdot c$.

NOTATION

Notation.

Suppose R is a set.

If R is a ring with certain operations \oplus and \odot , we write (R, \oplus, \odot) .

That is, we write (R, \oplus, \odot) to specify the operations of R.

Additive group and multiplication

Let $(R, +, \cdot)$ be a ring.

- The group (R, +) is called the **additive group** of R.
- the additive identity element 0_R is called the **zero** of the ring R.
- In general, *R* with multiplication is **not** a group. (Not necessarily has identity or inverses)

Examples of rings: $\mathbb{Z},\,\mathbb{Q},\,\mathbb{R}$ and \mathbb{C}

Example.

 $(\mathbb{Z}, +, \cdot)$ is a ring. We already know that $(\mathbb{Z}, +)$ is an abelian group. Note that (\mathbb{Z}, \cdot) is **not a group**, however, we have

- \mathbb{Z} is closed with respect to \cdot ,
- is associative: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$, for all $a, b, c \in \mathbb{Z}$,

• The **distributive laws** hold:

$$a \cdot (b+c) = a \cdot b + a \cdot c$$
, and $(a+b) \cdot c = a \cdot c + b \cdot c$.

Example.

Similarly as for $(\mathbb{Z}, +, \cdot)$, one can show that the following are rings:

$$(\mathbb{Q},+,\ \cdot),\qquad (\mathbb{R},+,\ \cdot),\qquad (\mathbb{C},+,\ \cdot).$$

POLYNOMIAL RINGS

Polynomial Rings

Let $\mathbb{R}[x]$ be the set of all polynomials in x:

$$\mathbb{R}[x] = \{a_0 + a_1 x + \dots + a_n x^n \mid a_i \in \mathbb{R}, \ n \in \mathbb{N} \cup \{0\}\}.$$

This is a ring with sum and multiplication of polynomials:

$$(f+g)(x) = f(x) + g(x)$$
 and $(f \cdot g)(x) = f(x) \cdot g(x)$.

Polynomials Rings

Similarly, we define the rings of polynomials with complex, rational and integer coefficients: $\mathbb{C}[x]$, $\mathbb{Q}[x]$, and $\mathbb{Z}[x]$.

Polynomial rings are **commutative** rings, that is, $a \cdot b = b \cdot a$.

More examples of rings from last time

More examples of rings from last time

- The integers mod n: $(\mathbb{Z}_n, +, \cdot)$.
- The set of 2 × 2 matrices with entries in ℝ: (Mat(2, ℝ), +, ·,).
- The set of multiples of n: $(n\mathbb{Z}, +, \cdot)$.

Remark

- (Mat(2, ℝ), +, ·,) is a ring that is not commutative and does not have all multiplicative inverses.
- $(n\mathbb{Z}, +, \cdot)$ is a ring without unity.

Definition.

Let $(R, +, \cdot)$ be a ring.

We say that a subset $S \subset R$ is a **subring** if $(S, +, \cdot)$ is itself a ring. Notation: $S \leq R$.

As in the case of groups, there is a quicker way to show that a subset $S \subseteq R$ of a ring $(R, +, \cdot)$ is a subring.

QUICK SUBRING THEOREM (QST)

Quick Subring Theorem (QST)

- A subset S of a ring R is a subring if and only if
 - 1. S is non-empty,
 - 2. S is closed under both addition and multiplication of R, and
 - 3. S contains the negative (i.e. the additive inverse) of each of its elements.

Example

Last time, we applied the QST to show that the Gaussian numbers

$$\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}\$$

form a subring of \mathbb{C} .

EXAMPLE

Example

3. Closed under multiplication: Given $a + bi, c + di \in \mathbb{Z}[i]$, we must show $(a + bi) \cdot (c + di) \in \mathbb{Z}[i]$.

$$(a+bi) \cdot (c+di) = (ac-bd) + (ad+bc)i \in \mathbb{Z}[i]$$

because ac - bd, $ad + bc \in \mathbb{Z}$.

4. Negatives: Given $a + bi \in \mathbb{Z}[i]$, we must show that the additive inverse of a + bi also belongs to $\mathbb{Z}[i]$.

$$-(a+bi) = -a - bi = -a + (-b)i \in \mathbb{Z}[i]$$

because $-a, -b \in \mathbb{Z}$.

Thus, $(\mathbb{Z}[i], +, \cdot)$ is a subring of \mathbb{C} .

ZERO DIVISORS

ZERO DIVISORS: AN EXAMPLE

Example

In \mathbb{Z} , we have

If
$$x \neq 0$$
 and $y \neq 0$, then $xy \neq 0$.

That is, if we multiply non-zero numbers, we obtain a non-zero number.

However, in $\mathbb{Z}/4\mathbb{Z}$, we have

$$\overline{2} \neq \overline{0}$$
 but $\overline{2} \cdot \overline{2} = \overline{4} = \overline{0}$.

This property has a name: we say $\overline{2}$ is a **zero divisor** in $\mathbb{Z}/4\mathbb{Z}$. (We also say that \mathbb{Z} has no zero divisors.)

ZERO DIVISORS

Definition

Let R be a commutative ring (i.e. $a \cdot b = b \cdot a$ in R). We say an element $r \in R$ is a **zero divisor** if $a \cdot b = 0$ for some element $b \neq 0$ of R.

Example

In $\mathbb{Z}/12\mathbb{Z}$, we have

- $\overline{2}$ is a zero divisor because $\overline{2} \neq \overline{0}$ and $\overline{2} \cdot \overline{6} = \overline{0}$ (and $\overline{6} \neq \overline{0}$),
- $\overline{3}$ is a zero divisor because $\overline{3} \neq \overline{0}$ and $\overline{3} \cdot \overline{4} = \overline{0}$ (and $\overline{4} \neq \overline{0}$).

This also shows that $\overline{6}$ and $\overline{4}$ are zero divisors.

ZERO DIVISORS: EXAMPLES IN $\mathbb{Z}/4\mathbb{Z}$

Examples in $\mathbb{Z}/4\mathbb{Z}$

In $\mathbb{Z}/4\mathbb{Z}$, we have

\overline{1} is **not** a zero divisor because

$$\overline{1} \cdot \overline{1} = \overline{1}, \quad \overline{1} \cdot \overline{2} = \overline{2}, \quad \overline{1} \cdot \overline{3} = \overline{3}.$$

•
$$\overline{2} \cdot \overline{2} = \overline{0}$$
, thus $\overline{2}$ is a zero divisor.

\overline{3} is **not** a zero divisor because

$$\overline{3} \cdot \overline{1} = \overline{3}, \quad \overline{3} \cdot \overline{2} = \overline{2}, \quad \overline{3} \cdot \overline{3} = \overline{1}.$$

INTEGRAL DOMAINS

Definition

Let R be a **commutative** ring with **unity**.

We say that R is an **integral domain** if R has no zero divisors.

Example

 $\mathbb{Z},\,\mathbb{Q},\,\mathbb{R}$ and \mathbb{C} are integral domains:

- They are commutative,
- Their unity is 1,
- $a \cdot b = 0$ if and only if a = 0 or b = 0.

$\mathbb{Z}/9\mathbb{Z}$ is not an integral domain

Although $\mathbb{Z}/9\mathbb{Z}$ is commutative and has unity $\overline{1}$, it is not an integral domain because

$$\overline{3} \cdot \overline{3} = \overline{0}$$
 and $\overline{3} \neq \overline{0}$.

 $Mat(2,\mathbb{R})$

 $Mat(2,\mathbb{R})$ is **not** an integral domain because it is not commutative.

$\mathbb{Z} \times \mathbb{Z}$

 $\mathbb{Z} \times \mathbb{Z}$ is **not** an integral domain because it has zero divisors:

 $(1,0) \cdot (0,1) = (0,0).$

(However, it is commutative and the unity is (1, 1).)

$\mathbb{Z}/n\mathbb{Z}$

Exercise: Show that if n is not a prime, then $\mathbb{Z}/n\mathbb{Z}$ is not an integral domain.

Exercise: Show that if p is prime, then $\mathbb{Z}/p\mathbb{Z}$ is an integral domain.

$\mathbb{Z}[x]$ is an integral domain

Last time, we showed that $\mathbb{Z}[x]$ is an integral domain.

Similarly, $\mathbb{C}[x]$, $\mathbb{R}[x]$ and $\mathbb{Q}[x]$ are also integral domains.

CANCELLATION LAWS

Lemma.

Let D be an integral domain with $a, b, c \in D$. If $a \neq 0$, then ab = ac implies b = c.

Similarly,

$$ba = ca$$
 implies $b = c$.

Proof.

$$ab = ac \Longrightarrow ab - ac = 0$$

 $\Longrightarrow a(b - c) = 0$

Now, since D is an integral domain, we must have a = 0 or b - c = 0.

We know that $a \neq 0$ so that b = c.

CANCELLATIONS DO NOT WORK IN NON-INTEGRAL DOMAINS

Remark.

If R is a ring that is not an integral domain, then **cancellation** laws might not work!

Example

 $\mathbb{Z}/12\mathbb{Z}$ is not an integral domain because $\overline{2} \cdot \overline{6} = \overline{0}$.

We have

$$\overline{4} \cdot \overline{1} = \overline{4}$$
 and $\overline{4} \cdot \overline{4} = \overline{4}$,

however, we know that $\overline{1} \neq \overline{4}$.

So, cancellation does not work!

Next time..

■ New algebraic structures: Fields!