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Detailed Slides

Deep Dive Slides

The Deep Dive Slides are essentially the same as the lecture

slides, but with added information for your convenience.

While the lecture slides come with my explanations, the detailed

notes are self-contained to help you study independently!
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Week 19: Goals

Last time:

Subrings,

Quick Subring Theorem,

Zero divisors and Integral Domains.

Today:

Reminder: Rings, subrings, zero divisors and Integral Domains.

2 29



Reminder: Ring Theory



Ring Theory

Ring Theory

Last semester, after completing the group theory section of

this module, we were introduced to a new algebraic structure

called a ring.

We learned that rings and groups share some similarities,

particularly in their axioms (or the "rules" that govern them).

The key di�erence is that a ring has two operations instead
of just one!

Consequently, there are axioms associated with each of these

operations.
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Rings

Rings

A ring is a set R with two operations (usually denoted by) + and ·
satisfying:

R with + is an abelian group,

R is closed with respect to ·, (i.e. a · b ∈ R, ∀a, b ∈ R)

· is associative: (a · b) · c = a · (b · c),

For all a, b, c ∈ R, the distributive laws hold:

a · (b+ c) = a · b+ a · c, and (a+ b) · c = a · c+ b · c.

4 29



Notation

Notation.

Suppose R is a set.

If R is a ring with certain operations ⊕ and ⊙, we write (R,⊕,⊙).

That is, we write (R,⊕,⊙) to specify the operations of R.

Additive group and multiplication

Let (R,+, ·) be a ring.

The group (R,+) is called the additive group of R.

the additive identity element 0R is called the zero of the

ring R.

In general, R with multiplication is not a group.

(Not necessarily has identity or inverses)
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Examples of rings: Z, Q, R and C

Example.

(Z,+, ·) is a ring. We already know that (Z,+) is an abelian group.

Note that (Z, ·) is not a group, however, we have

Z is closed with respect to ·,

· is associative: (a · b) · c = a · (b · c), for all a, b, c ∈ Z,

The distributive laws hold:

a · (b+ c) = a · b+ a · c, and (a+ b) · c = a · c+ b · c.

Example.

Similarly as for (Z,+, )̇, one can show that the following are rings:

(Q,+, ·), (R,+, ·), (C,+, ·).
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Polynomial Rings

Polynomial Rings

Let R[x] be the set of all polynomials in x:

R[x] = {a0 + a1x+ · · ·+ anx
n | ai ∈ R, n ∈ N ∪ {0}}.

This is a ring with sum and multiplication of polynomials:

(f + g)(x) = f(x) + g(x) and (f · g)(x) = f(x) · g(x).

Polynomials Rings

Similarly, we de�ne the rings of polynomials with complex, rational

and integer coe�cients: C[x], Q[x], and Z[x].

Polynomial rings are commutative rings, that is, a · b = b · a.
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Proof

Proof. If you interested, here is a quick proof that R[x] is a ring.

(The details are left as exercise.) The proof that C[x], Q[x] and
Z[x] are rings follows the exact same steps.

Let us �rst show that (R[x],+) is an abelian group:

Closed: We know that adding two polynomials with

coe�cients over R gives a polynomial over R.
Associativity: This follows from the associativity of R. I will
give one example to illustrate: consider

f(x) = x2 − 1, g(x) = x3 +
√
2x− 1, h(x) = x.

Then

(f(x) + g(x)) + h(x) = (x3 + x2 −
√
2x− 1) + x

= x3 + x2 + (1−
√
2)x− 1

= x2 − 1 +
(
x3 + (1−

√
2)x

)
= f(x) + (g(x) + h(x)) .
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Proof-Part 2

Proof. Continuation:

Identity element: We see that the zero polynomial 0(x) = 0,
∀x ∈ R is the identity element.

(Additive) inverses: Given a polynomial

f(x) = amxm + am−1x
m−1 + · · ·+ a1x+ a0

with ai ∈ R, we see that

g(x) = −amxm − am−1x
m−1 − · · · − a1x− a0

is the (additive) inverse of f(x). In fact

f(x) + g(x) = 0(x) = g(x) + f(x).
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Proof-Part 3

Proof. Continuation: We have shown that (R[x],+) is a group.

We still need to show it is abelian. In fact, given two elements

f(x) = amxm + am−1x
m−1 + · · ·+ a1x+ a0,

g(x) = bnx
n + bn−1x

n−1 + · · ·+ b1x+ b0

of R[x], we have that their sum is

(amxm+am−1x
m−1+· · ·+a1x+a0)+(bnx

n+bn−1x
n−1+· · ·+b1x+b0).

For simplicity, assume m ≥ n. Then we get

f(x)+g(x) = amxm+· · ·+an+1x
n+1+· · ·+(an+bn)x

n+· · ·+(a0+b0).

Now, since ai + bi is a sum of real numbers and (R,+) is a abelian,

we know that (ai + bi) = (bi + ai). Therefore, f(x) + g(x) equals

= amxm + am−1x
m−1 + · · ·+ (bn + an)x

n + . . . (b1 + a1)x+ (b0 + a0)

= (bnx
n + · · ·+ b1x+ b0) + (amxm + · · ·+ a1x+ a0)

= g(x) + f(x).
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Proof-Part 4

Proof. Continuation: Now we know (R[x],+) is an abelian group.

We are left to show the last ring axioms:

Closed with multiplication: We know that multiplying two

polynomials with coe�cients over R gives a polynomial over R.

Associativity of multiplication: Similar to the sum.

Distributivity: This follows from the associativity of real

numbers. Since the coe�cients of the polynomials are real

numbers, and real numbers are associative under addition and

multiplication, the polynomials themselves are also associative
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More examples of rings from last time

More examples of rings from last time

Last time, we showed that the following are rings.

The integers mod n: (Zn,+, · ).

The set of 2× 2 matrices with entries in R:
(Mat(2,R),+, ·, ).

The set of multiples of n: (nZ,+, ·).

Remark

(Mat(2,R),+, ·, ) is a ring that is not commutative and does
not have all multiplicative inverses.

(nZ,+, ·) is a ring without unity.
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Subrings

Next slides: subrings and QST

We will now recall the notion of a subring. Similarly to groups,

if a ring contains a subset that is itself a ring (with the same

operations), we call the subset a subring.

We will also recall the Quick Subring Theorem/Test
(QST), which is very similar to the Quick Subgroup
Theorem.

The QST provides a faster way to determine whether a subset

is a subring without needing to verify all ring axioms.

Given that there are eight axioms to check (�ve to show that

the additive structure is an abelian group, plus the further

three ring axioms), having such a criterion is incredibly useful!
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Subings

De�nition.

Let (R,+, ·) be a ring.

We say that a subset S ⊂ R is a subring if (S,+, ·) is itself a ring.

Notation: S ≤ R.

As in the case of groups, there is a quicker way to show that a

subset S ⊆ R of a ring (R,+, ·) is a subring.
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Quick Subring Theorem (QST)

Quick Subring Theorem (QST)

A subset S of a ring R is a subring if and only if

1. S is non-empty,

2. S is closed under both addition and multiplication of R, and

3. S contains the negative (i.e. the additive inverse) of each of its

elements.

Example

Last time, we applied the QST to show that the Gaussian numbers

Z[i] = {a+ bi | a, b ∈ Z}
form a subring of C.
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Example - all steps

Example

Let us recall how to use the QST to check whether the Gaussian

numbers

Z[i] = {a+ bi | a, b ∈ Z}
form a subring of C.
1. Non-empty: Here, we have to show that Z[i] has at least one

element. The easiest is to give an example:

0 = 0 + 0i ∈ Z[i] because 0 ∈ Z.

2. Closed under addition: Given a+ bi, c+ di ∈ Z[i], we must
show (a+ bi) + (c+ di) ∈ Z[i].

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i ∈ Z[i]

because a+ b, c+ d ∈ Z.
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Example

Example

3. Closed under multiplication: Given a+ bi, c+ di ∈ Z[i], we
must show (a+ bi) · (c+ di) ∈ Z[i].

(a+ bi) · (c+ di) = (ac− bd) + (ad+ bc)i ∈ Z[i]

because ac− bd, ad+ bc ∈ Z.

4. Negatives: Given a+ bi ∈ Z[i], we must show that the

additive inverse of a+ bi also belongs to Z[i].

−(a+ bi) = −a− bi = −a+ (−b)i ∈ Z[i]

because −a, −b ∈ Z.

Thus, (Z[i],+, ·) is a subring of C.
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Zero Divisors



Next slides: Zero divisors

Zero divisors

1. Zero divisors are simply elements that are non-zero but if you

multiply them, you get zero.

2. Not having zero divisors makes computations easier.

3. In fact, as we will see, the usual cancellation law is only valid

in rings not having zero divisors.

For instance, in Z6, we know that 2 and 3 are non-zero

elements (i.e. 2 and 3 are not zero mod 6). However,
2 · 3 = 6 = 0 mod 6. (In other words, they are zero divisors.)

Note also that in Z6

2 · 2 = 2 · 5,

however, we cannot cancel out 2 from both equalities,

otherwise we get 2 = 5 which is not the case mod 6.
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Zero Divisors: an example

Example

In Z, we have

If x ̸= 0 and y ̸= 0, then xy ̸= 0.

That is, if we multiply non-zero numbers, we obtain a non-zero

number.

However, in Z/4Z, we have

2 ̸= 0 but 2 · 2 = 4 = 0.

This property has a name: we say 2 is a zero divisor in Z/4Z.

(We also say that Z has no zero divisors.)
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Zero Divisors

De�nition

Let R be a commutative ring (i.e. a · b = b · a in R).

We say an element r ∈ R is a zero divisor if a · b = 0 for some

element b ̸= 0 of R.

Example

In Z/12Z, we have

2 is a zero divisor because 2 ̸= 0 and 2 · 6 = 0 (and 6 ̸= 0),

3 is a zero divisor because 3 ̸= 0 and 3 · 4 = 0 (and 4 ̸= 0).

This also shows that 6 and 4 are zero divisors.
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Zero Divisors: Examples in Z/4Z

Examples in Z/4Z
In Z/4Z, we have

1 is not a zero divisor because

1 · 1 = 1, 1 · 2 = 2, 1 · 3 = 3.

2 · 2 = 0, thus 2 is a zero divisor.

3 is not a zero divisor because

3 · 1 = 3, 3 · 2 = 2, 3 · 3 = 1.
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Integral domains



Next slides: Integral Domains

Integral Domains

In the next slides we will de�ne and see examples of integral
domains.

An integral domain D is a ring that has the following
properties:
▶ it has unity 1D,
▶ it is commutative (i.e. a · b = b · a for all a, b ∈ D),
▶ it has no zero divisors.

We will see at the end of the section that the cancellation law

only holds for integral domains (but not for rings in general).

Recall that the cancellation law says:

a · b = a · c =⇒ b = c and · a · b = c · b =⇒ a = c.
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Integral domains

De�nition

Let R be a commutative ring with unity.

We say that R is an integral domain if R has no zero divisors.

Example

Z, Q, R and C are integral domains:

They are commutative,

Their unity is 1,

a · b = 0 if and only if a = 0 or b = 0.
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Non-Examples

Z/9Z is not an integral domain

Although Z/9Z is commutative and has unity 1, it is not an
integral domain because

3 · 3 = 0 and 3 ̸= 0.

Mat(2,R)
Mat(2,R) is not an integral domain because it is not commutative.

Z× Z
Z× Z is not an integral domain because it has zero divisors:

(1, 0) · (0, 1) = (0, 0).

(However, it is commutative and the unity is (1, 1).)
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Examples from last time

Z/nZ
Exercise: Show that if n is not a prime, then Z/nZ is not an

integral domain.

Exercise: Show that if p is prime, then Z/pZ is an integral

domain.

Z[x] is an integral domain

Last time, we showed that Z[x] is an integral domain.

Similarly, C[x], R[x] and Q[x] are also integral domains.
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Cancellation law

Cancellation law

In the next slide, we show that if a ring does not have zero

divisors (for instance, integral domains), then the cancellation

law holds.

After that, we will see an example of a ring (having zero

divisors) where cancellation law does not hold.

again, the cancellation law is

a · b = a · c =⇒ b = c and · a · b = c · b =⇒ a = c.
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Cancellation laws

Lemma.

Let D be an integral domain with a, b, c ∈ D.

If a ̸= 0, then
ab = ac implies b = c.

Similarly,

ba = ca implies b = c.

Proof.

ab = ac =⇒ ab− ac = 0

=⇒ a(b− c) = 0

Now, since D is an integral domain, we must have a = 0 or

b− c = 0.

We know that a ̸= 0 so that b = c.
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Cancellations do not work in non-integral
domains

Remark.

If R is a ring that is not an integral domain, then cancellation
laws might not work!

Example

Z/12Z is not an integral domain because 2 · 6 = 0.

We have

4 · 1 = 4 and 4 · 4 = 4,

however, we know that 1 ̸= 4.

So, cancellation does not work!
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Next lecture

Next time...

New algebraic structures: Fields!
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