ALGEBRAIC STRUCTURES - PRACTICAL 8

This week's Exercises

Solve all the exercises of this section (i.e. Exercises 7.1 to 7.3) before the beginning of Semester B.

8.1. Compute the following principal ideals.

- (1) $(\overline{3})$ in $\mathbb{Z}/9\mathbb{Z}$,
- (2) $(\overline{3})$ in $\mathbb{Z}/7\mathbb{Z}$,
- (3) $(\overline{4})$ in $\mathbb{Z}/12\mathbb{Z}$,
- (4) $(\overline{4})$ in $\mathbb{Z}/16\mathbb{Z}$.

8.2. Compute the characteristic of the following rings:

(a) $\mathbb{F}_2 \times \mathbb{F}_3$ (the Cartesian product ring, also called direct product, of the fields $\mathbb{F}_2 =$ $(\mathbb{Z}/2\mathbb{Z})$ and $\mathbb{F}_3 = (\mathbb{Z}/3\mathbb{Z})$;

- (b) $\mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/8\mathbb{Z};$
- (c) $\mathbb{C} \times \mathbb{F}_2$;

(d) $\mathbb{F}_{31}[x, y]$, the polynomial ring in two variables x and y and coefficients in the field $\mathbb{F}_{31} = \mathbb{Z}/31\mathbb{Z}.$

8.3. [Important properties of cosets]. Let I be an ideal of a ring R and $a, b \in R$.

- (1) Show that a + I = I if and only if $a \in I$.
- (2) Show that either a + I = b + I or $a + I \cap b + I = \emptyset$. (That is, two cosets are either disjoint or the same.)
- (3) Show that a + I = b + I if and only if $a b \in I$.

Practice Exercises

The next exercises are meant to give you some extra practice to better prepare for assessments.

8.4. Let R be a ring and let I be an ideal of R.

Verify that $\eta: R \to R/I$ given by

$$\eta(r) = r + I$$

is a ring homomorphism.

8.5. In the quotient ring $\mathbb{F}_3[x]/J$ where $J = (x^3 + 2)$, describe the following elements (which are cosets) in the form

$$(a+bx)+J.$$

- (a) $(2+x+2x^2+J)(1+x^2+J);$ (b) $(1+2x+x^4+J)+(x^3+J).$

8.6. Let *I* be an ideal of a ring *R*. Show that the quotient ring R/I is commutative if and only if $ab - ba \in I$ for all $a, b \in R$.

8.7. Consider polynomials with coefficients in $\mathbb{Z}/n\mathbb{Z}$. Express your answers to the following questions in terms of n and d.

- (a) In $(\mathbb{Z}/n\mathbb{Z})[x]$, how many different polynomials are there of degree $\leq d$?
- (b) In $(\mathbb{Z}/n\mathbb{Z})[x]$, how many different monic polynomials are there of degree d?
- (c) In $(\mathbb{Z}/n\mathbb{Z})[x]$, how many different polynomials are there of degree d?

8.8. Find the field of fractions of the following rings.

- (1) The integers \mathbb{Z} ,
- (2) The polynomial ring $\mathbb{Q}[x]$,
- (3) The finite field \mathbb{F}_p (p prime),

(4) The ring of Gaussian integers $\mathbb{Z}[i] = \{a + ib \mid a, b \in \mathbb{Z}\}.$

Extra Exercises

These **extra** exercises are designed to provide additional challenges for students seeking to deepen their understanding.

These exercises are organised by topic rather than by difficulty.

General.

8.9. Prove that 1 and p-1 are the only elements of $Z_p = \mathbb{Z}/p\mathbb{Z}$ that are their own inverses, for any prime p.

Ideals.

8.10. Let *R* be a ring with unity and *I* an ideal in *R*. Show that if some element $a \in I$ has a multiplicative inverse in *R*, then I = R.

8.11. Let R be a ring and define

 $I = \{ x \in R \mid x^n = 0, \text{ for some } n \in \mathbb{N} \}.$

- (1) Show that if R is commutative, then I is an ideal of R.
- (2) Provide an example to demonstrate that if R is non-commutative, then I is not necessarily an ideal.

Remark: An element x in a ring R for which there exists an $n \in \mathbb{N}$ such that $x^n = 0$ is called a **nilpotent element**.

Characteristic of a ring.

8.12. Let R be a commutative ring with unity and let $\operatorname{Char}(R) = 3$. Compute and simplify

$$(a+b)^9, \quad a,b \in R.$$

8.13. Let R be a ring in which every element is an idempotent. That is, every $x \in R$ satisfies $x^2 = x$. Show that $\operatorname{Char}(R) = 2$ and that R is commutative.

Field of fractions.

8.14. A Laurent series over a field \mathbb{C} is an infinite series of the form:

$$f(x) = \sum_{i=-\infty}^{\infty} a_i x^i$$

where $a_i \in \mathbb{C}$ and only finitely many a_i for i < 0 are non-zero. This means that while the series can have infinitely many terms with non-negative powers of x, it can only have a finite number of terms with negative powers of x.

- (1) Prove that the set of all Laurent series $\mathbb{C}[[x, x^{-1}]]$ forms a ring under the usual operations of addition and multiplication of series.
- (2) Find the field of fractions of $\mathbb{C}[[x, x^{-1}]]$.