ALGEBRAIC STRUCTURES - PRACTICAL 6 (SOLUTIONS)

This week's Exercises

Solve all the exercises of this section (i.e. Exercises 6.1 to 6.4) before Week 21.

6.1. Which elements of $\mathbb{Z}/4\mathbb{Z}$ are zero divisors? Which of $\mathbb{Z}/12\mathbb{Z}$?

Solution: We see that $\overline{2}$ is a zero divisors of $\mathbb{Z}/4\mathbb{Z}$ because $\overline{2} \cdot \overline{2} = \overline{0}$. Let us check whether this is the only zero divisor:

- We see that $\overline{1}$ is not a zero divisor because $\overline{1} \cdot a = a$, so if $a \neq \overline{0}$ then $\overline{1} \cdot a \neq \overline{0}$.
- $\overline{3}$ is not a zero divisor because $\overline{3} \cdot \overline{2} = \overline{2}$ and $\overline{3} \cdot \overline{3} = \overline{1}$. (We do not need to check $\overline{3} \cdot \overline{1}$ because we already know $\overline{1}$ is not a zero divisor.

It follows that the only zero divisor of $\mathbb{Z}/4\mathbb{Z}$ is $\overline{2}$.

The elements $\overline{2}$, $\overline{3}$, $\overline{4}$, $\overline{6}$, $\overline{8}$, $\overline{9}$, and $\overline{10}$ are zero divisors of $\mathbb{Z}/12\mathbb{Z}$ because

 $\overline{2} \cdot \overline{6} = \overline{0}, \quad \overline{3} \cdot \overline{8} = \overline{0}, \quad \overline{4} \cdot \overline{9} = \overline{0}, \quad \text{and} \ \overline{6} \cdot \overline{10} = \overline{0}.$

Let us check whether those are the only zero divisors:

- As above, $\overline{1}$ is not a zero divisor.
- $\overline{5}$ is not a zero divisor because $\overline{5} \cdot \overline{2} = \overline{10}, \overline{5} \cdot \overline{3} = \overline{3}, \overline{5} \cdot \overline{4} = \overline{8}$, and $\overline{5} \cdot \overline{5} = \overline{1}$. (We do not need to check the next multiplications because we reached $\overline{1}$, so the values start to repeat.)
- Similarly, $\overline{7}$ and $\overline{11}$ are not a zero divisors. (It is a good exercise to check this!)

6.2. Consider the rings \mathbb{Z} and $\mathbb{Z} \times \mathbb{Z}$.

- (1) Which ones have unity? Write down the unities (if any).
- (2) Which of them have zero divisors? Write down all zero divisors (if any).
- (3) Which ones are integral domains? Justify.
- (4) Which ones are fields? Justify.

Solution: (1) They all have unity. The unities are 1 and (1, 1) respectively.

(2) \mathbb{Z} has no zero divisor. We know that if a and b are non-zero integers, then $a \cdot b \neq 0$. Now, let us check whether $\mathbb{Z} \times \mathbb{Z}$ has zero divisors. The product of two arbitrary elements of $\mathbb{Z} \times \mathbb{Z}$ is $(a, b) \cdot (c, d) = (ac, bd)$.

Suppose the pair (a, b) is a zero divisor. Then $(a, b) \neq (0, 0)$ and there is some pair $(c, d) \neq (0, 0)$ with $(a, b) \cdot (c, d) = (0, 0)$, which means ac = 0 and bd = 0. Because $(c, d) \neq (0, 0)$, either $c \neq 0$ or $d \neq 0$ (or both). In the former case ac = 0 shows a = 0, and in the latter case bd = 0 shows b = 0. Hence any zero divisor (a, b) must have either a = 0 or b = 0, but nor both because $(a, b) \neq (0, 0)$.

Conversely, we see that any such pair is a zero divisor: for any pair (a, 0) we have $(a, 0) \cdot (0, 1) = (0, 0)$, and similarly in the other case.

In conclusion, the zero divisors in $\mathbb{Z} \times \mathbb{Z}$ are all pairs of the form (a, 0) with $a \neq 0$, and those of the form (0, b) with $b \neq 0$.

(3) \mathbb{Z} is an integral domains because it is commutative, has unity 1 and it has no zero divisors.

 $\mathbb{Z} \times \mathbb{Z}$ is not an integral domain because (although it is commutative and has unity) it has zero divisors.

(4) Neither are fields: \mathbb{Z} does not have inverses and $\mathbb{Z} \times \mathbb{Z}$ is not even an integral domain.

6.3. Prove that $a^2 - b^2 = (a+b)(a-b)$ for all a, b in a ring R if and only if R is commutative.

Solution:

First, suppose $a^2 - b^2 = (a + b)(a - b)$ for all $a, b \in R$. We must show that the ring R is commutative. That is, given $x, y \in R$, we must show xy = yx using the fact that $a^2 - b^2 = (a + b)(a - b)$ for all $a, b \in R$.

In fact,

so if $x^2 - y^2$

$$(x+y)(x-y) = x^2 + yx - xy - y^2$$

= $(x+y)(x-y)$, then
 $yx - xy = 0$

i.e. yx = xy.

Now, we need to show the other direction. That is, we assume that R is commutative and show that $a^2 - b^2 = (a + b)(a - b)$ for all $a, b \in R$. We have

$$(a+b)(a-b) = a^2 + ba - ab - b^2 = a^2 - b^2,$$

as required.

6.4.

- (1) Prove that if n is not prime then $\mathbb{Z}/n\mathbb{Z}$ is not an integral domain.
- (2) Prove that if p is a prime, then $\mathbb{Z}/p\mathbb{Z}$ is an integral domain.

Solution: (1) By definition, if n is non-prime, then there are two integers a and b such that $a \neq \pm 1$, $b \neq \pm 1$ and n = ab.

This means in particular that a < n and b < n, so that $\overline{a} \neq \overline{0}$ and $\overline{b} \neq \overline{0}$ and $\overline{a} \cdot \overline{b} = \overline{ab} = \overline{n} = \overline{0}$.

This means that \overline{a} and \overline{b} are zero divisors.

(2) To show that $\mathbb{Z}/p\mathbb{Z}$ is an integral domain, we must show that it has no zero divisors. That is, given elements $\overline{a}, \overline{b} \in \mathbb{Z}/p\mathbb{Z}$, we must show that either $\overline{a} = \overline{0}$ or $\overline{b} = \overline{0}$.

Suppose $\overline{a} \neq \overline{0}$. Let us show that $\overline{b} = \overline{0}$. Since $\overline{ab} = \overline{a} \cdot \overline{b} = \overline{0}$, we know that p divides ab. Since $\overline{a} \neq \overline{0}$, $p \nmid a$. Because p is a prime, we must have $p \mid b$. In other words, $\overline{b} = \overline{0}$.

Practice Exercises

The next exercises are meant to give you some extra practice to better prepare for assessments.

6.5. Let *D* be an integral domain.

- (1) Show that if $a \in D$ satisfies $a^2 = 1$, then a is either 1 or -1.
- [*Hint*: Show that $a^2 1 = 0$ and factorise the left-hand side.]
- (2) Show that if $a \in D$ satisfies $a^2 = a$, then a is either 0 or 1.
- (3) Show that if $a \in D$ satisfies $a^n = 0$ for some positive integer n, then a = 0.

Solution: (1) Subtracting 1 from both sides of $a^2 = 1$ we find $a^2 - 1 = 0$, which can be written as (a - 1)(a + 1) = 0. This is because the identity $a^2 - b^2 = (a - b)(a + b)$ holds in any commutative ring. (We need the ring to be commutative in order to cancel ab with ba in $(a - b)(a + b) = a^2 + ab - ba - b^2$). Since D is an integral domain, so it has no zero divisors, this implies either a - 1 = 0 or a + 1 = 0. In the former case we get a = 1, and in the latter case we get a = -1.

(2) Subtracting a from both sides of $a^2 = a$ we find $a^2 - a = 0$, which can be written as a(a-1) = 0 after collecting a. Like in part (1) we conclude that either a = 0, or a - 1 = 0, which in turn means a = 1.

(3) We can show this by induction on n. Clearly true when n = 1, so let n > 1 and assume the statement to be true when n is replaced with any smaller integer. If $a^n = 0$ then we may rewrite this condition as $a \cdot a^{n-1} = 0$, Because D is an integral domain, either a = 0, which is the desired conclusion, or $a^{n-1} = 0$. In the latter case a = 0 follows by the inductive hypothesis, so this completes our induction step.

6.6. Finish the proof of the properties of rings: show that, if $(R, +, \cdot)$ is a ring and $a, b, c \in R$, then

- (1) Each equation a + x = b (or x + a = b) has a unique solution.
- (2) -(-a) = a and -(a+b) = (-a) + (-b).
- (3) If m and n are integers, then $(m+n) \cdot a = ma + na$, $m \cdot (a+b) = ma + mb$, and m(na) = (mn)a.

In (3), given a positive integer m, what we mean by ma is

$$ma = \underbrace{a + a + \dots + a}_{m \text{ times}}$$
 and $(-m)a = \underbrace{-a - a - \dots - a}_{m \text{ times}}$.

Solution: (1) First, we show that a solution exists. Notice that $b - a \in R$ because $a, b \in R$ and R is a ring. Hence, x = b - a satisfies a + x = b.

Now, we show that the solution is unique. Suppose $r, s \in R$ are solutions of the equation a + x = b. Let us show that r = s. In fact, a + r = b = a + s. Subtracting a from both sides of a + r = a + s gives r = s.

Similar arguments show that x + a = b has a unique solution.

(2) We have that a + (-a) = 0. In particular, this means that a is the additive inverse of -a. In symbols: -(-a) = a.

(3) Let us show these equalities for m and n positive. The other cases follow from similar arguments.

Notice that everything follows from definition:

$$(m+n)a = \underbrace{a+a+\dots+a}_{m+n \text{ times}} = \underbrace{a+a+\dots+a}_{m \text{ times}} + \underbrace{a+a+\dots+a}_{n \text{ times}} = ma+na.$$

Also,

 $m(a+b) = \underbrace{(a+b) + (a+b) + \dots + (a+b)}_{m+n \text{ times}} = \underbrace{a+a+\dots+a}_{m \text{ times}} + \underbrace{b+b+\dots+b}_{n \text{ times}} = ma+mb,$

where we are using the fact that (R, +) is an abelian group (i.e. a + b = b + a). Moreover, $(m(na)) = \underbrace{na + na + \dots + na}_{m \text{ times}}$ and $na = \underbrace{a + a + \dots + a}_{n \text{ times}}$, so that $(m(na)) = \underbrace{a + a + \dots + a}_{mn \text{ times}} = (mn)a.$

6.7. The centre of a ring R is defined to be $\{c \in R \mid cr = rc \text{ for every } r \in R\}$. Show that the centre of a ring with unity is a subring.

Solution: Let us apply the QST. Denote by $Z = \{c \in R \mid cr = rc \text{ for every } r \in R\}$.

Non-empty: Since R is a ring with unity e, and the unity satisfies er = re for all $r \in R$, we see that $e \in Z$.

Closed under addition: For $c, d \in Z$, we must show $c + d \in Z$. Now, what does it mean for c + d to be an element of Z? (Think a bit before checking the solution!)

c+d only belongs to Z if (c+d)r = r(c+d) for all $r \in R$. Now, to show this, we can use the fact that $c, d \in Z$, i.e. cr = rc and dr = rd for all $r \in R$. So that

$$r(c+d) = rc + rd \qquad (R \text{ is a ring-hence distributive-and } r, c, d \in R)$$
$$= cr + dr \qquad (cr = rc \text{ and } dr = rd \text{ for all } r \in R)$$
$$= (c+d)r \qquad (\text{Distributivity of } R \text{ again})$$

as required.

Closed under multiplication: For $c, d \in Z$, we must show $cd \in Z$. Similarly as before, this means we need to show (cd)r = r(cd) for all $r \in R$. To show this, we can use the fact that $c, d \in Z$, i.e. cs = sc and ds = sd for all $s \in R$. So that

$$r(cd) = (rc)d \qquad (R \text{ is associative and } r, c, d \in R)$$

$$= (cr)d \qquad (cr = rc \text{ for all } r \in R)$$

$$= d(cr) \qquad (ds = sd \text{ for all } s \in R \text{ and } cr \in R)$$

$$= (dc)r \qquad (Associativity of R again)$$

$$= (cd)r \qquad (ds = sd \text{ for all } s \in R)$$

Negatives: For each $c \in Z$, we already know that its additive inverse exists because R is a ring, so $-c \in R$. We are left to show that $-c \in Z$. That is, we must show that (-c)r = r(-c) for all $r \in R$. In fact,

$$(-c)r = -(cr) = -(rc) = r(-c)$$

for all $r \in R$. Hence Z contains the negative of each of its elements. Therefore Z is a subring of R.

6.8. What is the smallest subring of \mathbb{Z} containing 3? What is the smallest subring of \mathbb{R} containing 1/2?

By smallest we mean with respect to inclusion. For instance, we say that R is the smallest subring of \mathbb{Z} containing 3 if every subring S of \mathbb{Z} containing 3 is such that $R \subseteq S$.

Solution: Let denote by S be the smallest subring of \mathbb{Z} containing 3 so that we can find out what S is.

By definition, S is closed under addition because it is a ring. Since $3 \in S$, we see that every multiple of 3 is also in S. Therefore $3\mathbb{Z} \subseteq S$.

Let us now show that $S \subseteq 3\mathbb{Z}$ so that we can conclude $S = 3\mathbb{Z}$.

We have already shown that $3\mathbb{Z}$ is a subring of \mathbb{Z} . We defined S to be the smallest ring containing 3. This means that for every ring R containing 3, we must have $S \subseteq R$. In particular, $S \subseteq 3\mathbb{Z}$ as desired.

Let us now find the smallest subring of \mathbb{R} containing 1/2. Denote it by T.

Because T is a ring, it is closed under addition so that $n \cdot \frac{1}{2} \in T$ for all $n \in \mathbb{N}$.

Also, since the negative of every element in T is again in T, we get that $n \cdot \frac{1}{2} \in T$ for all $n \in \mathbb{Z}$. In other words, $\frac{1}{2}\mathbb{Z} \subseteq T$.

However $\frac{1}{2}\mathbb{Z}$ is not closed under multiplication, since $1/2 \cdot 1/2 = 1/4 \notin \frac{1}{2}\mathbb{Z}$. But we see that $\frac{1}{4} \in T$ because T is a ring containing $\frac{1}{2}$. We conclude that $\frac{1}{4}\mathbb{Z} \subseteq T$. Now, because $\frac{1}{2}, \frac{1}{4} \in T$, we must have that $\frac{1}{8} = \frac{1}{2} \cdot \frac{1}{4} \in T$, hence $\frac{1}{8}\mathbb{Z} \subseteq T$. And so on. We

then get

$$\frac{1}{2}\mathbb{Z} \cup \frac{1}{4}\mathbb{Z} \cup \frac{1}{8}\mathbb{Z} \cup \ldots = \left\{\frac{1}{2^n} \cdot k \mid k \in \mathbb{Z}, n \in \mathbb{N}\right\} \subseteq T.$$

Applying the QST we see that (you should check!)

$$\frac{1}{2}\mathbb{Z} \cup \frac{1}{4}\mathbb{Z} \cup \frac{1}{8}\mathbb{Z} \cup \ldots = \left\{\frac{1}{2^n} \cdot k \mid k \in \mathbb{Z}, n \in \mathbb{N}\right\}$$

is a subring of \mathbb{R} . Since T is the smallest subring of \mathbb{R} containing 1/2, it follows that $T = \{ \frac{1}{2^n} \cdot k \mid k \in \mathbb{Z}, n \in \mathbb{N} \}.$