
ALGEBRAIC STRUCTURES - PRACTICAL 6 (SOLUTIONS)

This week’s Exercises

Solve all the exercises of this section (i.e. Exercises 6.1 to 6.4) before Week 21.

6.1. Which elements of Z/4Z are zero divisors? Which of Z/12Z?

Solution: We see that 2 is a zero divisors of Z/4Z because 2 · 2 = 0. Let us check whether
this is the only zero divisor:

• We see that 1 is not a zero divisor because 1 · a = a, so if a ̸= 0 then 1 · a ̸= 0.
• 3 is not a zero divisor because 3 · 2 = 2 and 3 · 3 = 1. (We do not need to check 3 · 1
because we already know 1 is not a zero divisor.

It follows that the only zero divisor of Z/4Z is 2.

The elements 2, 3, 4, 6, 8, 9, and 10 are zero divisors of Z/12Z because

2 · 6 = 0, 3 · 8 = 0, 4 · 9 = 0, and 6 · 10 = 0.

Let us check whether those are the only zero divisors:

• As above, 1 is not a zero divisor.
• 5 is not a zero divisor because 5 · 2 = 10, 5 · 3 = 3, 5 · 4 = 8, and 5 · 5 = 1. (We do
not need to check the next multiplications because we reached 1, so the values start
to repeat.)

• Similarly, 7 and 11 are not a zero divisors. (It is a good exercise to check this!)

6.2. Consider the rings Z and Z× Z.
(1) Which ones have unity? Write down the unities (if any).
(2) Which of them have zero divisors? Write down all zero divisors (if any).
(3) Which ones are integral domains? Justify.
(4) Which ones are fields? Justify.

Solution: (1) They all have unity. The unities are 1 and (1, 1) respectively.

(2) Z has no zero divisor. We know that if a and b are non-zero integers, then a · b ̸= 0.

Now, let us check whether Z×Z has zero divisors. The product of two arbitrary elements
of Z× Z is (a, b) · (c, d) = (ac, bd).

Suppose the pair (a, b) is a zero divisor. Then (a, b) ̸= (0, 0) and there is some pair (c, d) ̸=
(0, 0) with (a, b) · (c, d) = (0, 0), which means ac = 0 and bd = 0. Because (c, d) ̸= (0, 0),
either c ̸= 0 or d ̸= 0 (or both). In the former case ac = 0 shows a = 0, and in the latter case
bd = 0 shows b = 0. Hence any zero divisor (a, b) must have either a = 0 or b = 0, but nor
both because (a, b) ̸= (0, 0).

Conversely, we see that any such pair is a zero divisor: for any pair (a, 0) we have (a, 0) ·
(0, 1) = (0, 0), and similarly in the other case.



2 ALGEBRAIC STRUCTURES - PRACTICAL 6 (SOLUTIONS)

In conclusion, the zero divisors in Z × Z are all pairs of the form (a, 0) with a ̸= 0, and
those of the form (0, b) with b ̸= 0.

(3) Z is an integral domains because it is commutative, has unity 1 and it has no zero
divisors.

Z×Z is not an integral domain because (although it is commutative and has unity) it has
zero divisors.

(4) Neither are fields: Z does not have inverses and Z×Z is not even an integral domain.

6.3. Prove that a2−b2 = (a+b)(a−b) for all a, b in a ring R if and only if R is commutative.

Solution:
First, suppose a2 − b2 = (a + b)(a − b) for all a, b ∈ R. We must show that the ring

R is commutative. That is, given x, y ∈ R, we must show xy = yx using the fact that
a2 − b2 = (a+ b)(a− b) for all a, b ∈ R.

In fact,
(x+ y)(x− y) = x2 + yx− xy − y2,

so if x2 − y2 = (x+ y)(x− y), then
yx− xy = 0

i.e. yx = xy.

Now, we need to show the other direction. That is, we assume that R is commutative and
show that a2 − b2 = (a+ b)(a− b) for all a, b ∈ R. We have

(a+ b)(a− b) = a2 + ba− ab− b2 = a2 − b2,

as required.

6.4.

(1) Prove that if n is not prime then Z/nZ is not an integral domain.
(2) Prove that if p is a prime, then Z/pZ is an integral domain.

Solution: (1) By definition, if n is non-prime, then there are two integers a and b such
that a ̸= ±1, b ̸= ±1 and n = ab.

This means in particular that a < n and b < n, so that a ̸= 0 and b ̸= 0 and a · b = ab =
n = 0.

This means that a and b are zero divisors.

(2) To show that Z/pZ is an integral domain, we must show that it has no zero divisors.
That is, given elements a, b ∈ Z/pZ, we must show that either a = 0 or b = 0.

Suppose a ̸= 0. Let us show that b = 0. Since ab = a · b = 0, we know that p divides ab.

Since a ̸= 0, p ∤ a. Because p is a prime, we must have p | b. In other words, b = 0.
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Practice Exercises

The next exercises are meant to give you some extra practice to better prepare for assess-
ments.

6.5. Let D be an integral domain.
(1) Show that if a ∈ D satisfies a2 = 1, then a is either 1 or −1.
[Hint: Show that a2 − 1 = 0 and factorise the left-hand side.]
(2) Show that if a ∈ D satisfies a2 = a, then a is either 0 or 1.
(3) Show that if a ∈ D satisfies an = 0 for some positive integer n, then a = 0.

Solution: (1) Subtracting 1 from both sides of a2 = 1 we find a2 − 1 = 0, which can be
written as (a − 1)(a + 1) = 0. This is because the identity a2 − b2 = (a − b)(a + b) holds in
any commutative ring. (We need the ring to be commutative in order to cancel ab with ba in
(a− b)(a+ b) = a2 + ab− ba− b2). Since D is an integral domain, so it has no zero divisors,
this implies either a− 1 = 0 or a+ 1 = 0. In the former case we get a = 1, and in the latter
case we get a = −1.

(2) Subtracting a from both sides of a2 = a we find a2 − a = 0, which can be written
as a(a−1) = 0 after collecting a. Like in part (1) we conclude that either a = 0, or a−1 = 0,
which in turn means a = 1.

(3) We can show this by induction on n. Clearly true when n = 1, so let n > 1 and
assume the statement to be true when n is replaced with any smaller integer. If an = 0 then
we may rewrite this condition as a · an−1 = 0, Because D is an integral domain, either a = 0,
which is the desired conclusion, or an−1 = 0. In the latter case a = 0 follows by the inductive
hypothesis, so this completes our induction step.

6.6. Finish the proof of the properties of rings: show that, if (R,+, ·) is a ring and a, b, c ∈ R,
then

(1) Each equation a+ x = b (or x+ a = b) has a unique solution.

(2) −(−a) = a and −(a+ b) = (−a) + (−b).

(3) If m and n are integers, then (m + n) · a = ma + na, m · (a + b) = ma + mb, and
m(na) = (mn)a.

In (3), given a positive integer m, what we mean by ma is

ma = a+ a+ · · ·+ a︸ ︷︷ ︸
m times

and (−m)a = −a− a− · · · − a︸ ︷︷ ︸
m times

.

Solution: (1) First, we show that a solution exists. Notice that b−a ∈ R because a, b ∈ R
and R is a ring. Hence, x = b− a satisfies a+ x = b.

Now, we show that the solution is unique. Suppose r, s ∈ R are solutions of the equation
a+ x = b. Let us show that r = s. In fact, a+ r = b = a+ s. Subtracting a from both sides
of a+ r = a+ s gives r = s.

Similar arguments show that x+ a = b has a unique solution.
(2) We have that a+ (−a) = 0. In particular, this means that a is the additive inverse of

−a. In symbols: −(−a) = a.
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(3) Let us show these equalities for m and n positive. The other cases follow from similar
arguments.

Notice that everything follows from definition:

(m+ n)a = a+ a+ · · ·+ a︸ ︷︷ ︸
m+n times

= a+ a+ · · ·+ a︸ ︷︷ ︸
m times

+ a+ a+ · · ·+ a︸ ︷︷ ︸
n times

= ma+ na.

Also,

m(a+ b) = (a+ b) + (a+ b) + · · ·+ (a+ b)︸ ︷︷ ︸
m+n times

= a+ a+ · · ·+ a︸ ︷︷ ︸
m times

+ b+ b+ · · ·+ b︸ ︷︷ ︸
n times

= ma+mb,

where we are using the fact that (R,+) is an abelian group (i.e. a + b = b + a). Moreover,
(m(na)) = na+ na+ · · ·+ na︸ ︷︷ ︸

m times

and na = a+ a+ · · ·+ a︸ ︷︷ ︸
n times

, so that

(m(na)) = a+ a+ · · ·+ a︸ ︷︷ ︸
mn times

= (mn)a.

6.7. The centre of a ring R is defined to be {c ∈ R | cr = rc for every r ∈ R}. Show that
the centre of a ring with unity is a subring.

Solution: Let us apply the QST. Denote by Z = {c ∈ R | cr = rc for every r ∈ R}.
Non-empty: Since R is a ring with unity e, and the unity satisfies er = re for all r ∈ R,

we see that e ∈ Z.

Closed under addition: For c, d ∈ Z, we must show c+ d ∈ Z. Now, what does it mean
for c+ d to be an element of Z? (Think a bit before checking the solution!)

c+ d only belongs to Z if (c+ d)r = r(c+ d) for all r ∈ R. Now, to show this, we can use
the fact that c, d ∈ Z, i.e. cr = rc and dr = rd for all r ∈ R. So that

r(c+ d) = rc+ rd (R is a ring–hence distributive–and r, c, d ∈ R)

= cr + dr (cr = rc and dr = rd for all r ∈ R)

= (c+ d)r (Distributivity of R again)

as required.

Closed under multiplication: For c, d ∈ Z, we must show cd ∈ Z. Similarly as before,
this means we need to show (cd)r = r(cd) for all r ∈ R. To show this, we can use the fact
that c, d ∈ Z, i.e. cs = sc and ds = sd for all s ∈ R. So that

r(cd) = (rc)d (R is associative and r, c, d ∈ R)

= (cr)d (cr = rc for all r ∈ R)

= d(cr) (ds = sd for all s ∈ R and cr ∈ R)

= (dc)r (Associativity of R again)

= (cd)r (ds = sd for all s ∈ R)

Negatives: For each c ∈ Z, we already know that its additive inverse exists because R is a
ring, so −c ∈ R. We are left to show that −c ∈ Z. That is, we must show that (−c)r = r(−c)
for all r ∈ R. In fact,

(−c)r = −(cr) = −(rc) = r(−c)
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for all r ∈ R. Hence Z contains the negative of each of its elements.

Therefore Z is a subring of R.

6.8. What is the smallest subring of Z containing 3? What is the smallest subring of R
containing 1/2?

[By smallest we mean with respect to inclusion. For instance, we say that R is the smallest
subring of Z containing 3 if every subring S of Z containing 3 is such that R ⊆ S.]

Solution: Let denote by S be the smallest subring of Z containing 3 so that we can find
out what S is.

By definition, S is closed under addition because it is a ring. Since 3 ∈ S, we see that
every multiple of 3 is also in S. Therefore 3Z ⊆ S.

Let us now show that S ⊆ 3Z so that we can conclude S = 3Z.
We have already shown that 3Z is a subring of Z. We defined S to be the smallest ring

containing 3. This means that for every ring R containing 3, we must have S ⊆ R. In
particular, S ⊆ 3Z as desired.

Let us now find the smallest subring of R containing 1/2. Denote it by T .

Because T is a ring, it is closed under addition so that n · 1
2 ∈ T for all n ∈ N.

Also, since the negative of every element in T is again in T , we get that n · 1
2 ∈ T for all

n ∈ Z. In other words, 1
2Z ⊆ T .

However 1
2Z is not closed under multiplication, since 1/2 · 1/2 = 1/4 /∈ 1

2Z. But we see

that 1
4 ∈ T because T is a ring containing 1

2 . We conclude that 1
4Z ⊆ T .

Now, because 1
2 ,

1
4 ∈ T , we must have that 1

8 = 1
2 · 1

4 ∈ T , hence 1
8Z ⊆ T . And so on. We

then get
1

2
Z ∪ 1

4
Z ∪ 1

8
Z ∪ . . . =

{ 1

2n
· k | k ∈ Z, n ∈ N

}
⊆ T.

Applying the QST we see that (you should check!)

1

2
Z ∪ 1

4
Z ∪ 1

8
Z ∪ . . . =

{ 1

2n
· k | k ∈ Z, n ∈ N

}
is a subring of R. Since T is the smallest subring of R containing 1/2, it follows that
T = { 1

2n · k | k ∈ Z, n ∈ N}.
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