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DETAILED SLIDES

Deep Dive Slides

m These slides are similar to the lecture slides but include added
motivations and explanations to enhance your learning
experience.

m They are self-contained for independent study and do not
provide additional material.

m Optional proofs are included (marked as optional).

m If you prefer a straightforward approach, you can study from
the lecture slides without missing anything.




WEEK 21: GOALS

Last time:

m Ideals,
m Principal Ideals,
m Quotient Rings,

m Field of Fractions.

m Characteristic of a ring,

m Polynomial Rings.



CHARACTERISTIC OF A RING




MULTIPLICATION OF ELEMENTS OF RINGS BY

INTEGERS

Definition.
Let R be a ring.
Let k € N (i.e. k is a positive integer) and r € R, then

kr=r+r+---+r.
~—_—

k times

If k£ is a negative integer, then

kr— —ri—p— o —

|k| times




EXAMPLE: R

If R =R, we know that

kr=r+r+.---+r,
—_—

k times

(=k)r=—r—r—---—r,

k times

for all £k € N and all r € R.



MULTIPLICATION OF ELEMENTS OF RINGS BY

INTEGERS

m The previous definition might seem a bit redundant at first.

m That is because we are used to k - r meaning r added k times.
m However, ring elements might not be numbers.

m E.g., imagine we have a ring R whose elements are fruits.

m In this case, what does k - F' mean for a fruit F'?

m We might not know "three times F'", but we know that since R is a
ring, it has a sum.

m In other words, when defining R, we must also define what F; + F5
means for any two fruits Fi, F5 in R.

m Thus, 3- F = F + F + F'is also given by this operation.

m That means that 3- F is I’ operated with itself three times using the
ring additive operation.




EXAMPLE: Mat(2,R)

Example
Let R = Mat(2,R) and k € N.

Question: What is k - (‘é 3)?
By definition,

k(o) =(ea)+(2a)+ -+ (2d) = (%K)

k times




CHARACTERISTIC OF A RING

m Knowing the characteristic of a ring can simplify calculations
within the ring.

m For example, in a ring with characteristic n > 0, any element
added to itself n times will result in zero.

m The characteristic also helps in classifying and understanding
rings.

m For instance, fields of prime characteristic p have different
properties compared to fields of characteristic 0, influencing
the types of polynomials that can be solved, for instance.

m In the next slides, we will define the characteristic of a ring
and provide examples of characteristics from rings we are
already familiar with.




CHARACTERISTIC OF A RING

Definition.

Let R be a ring.
Assume there is a positive integer k£ such that

kr =0g, for all r € R.

Then the least such k is called the characteristic of R.

If no such k exists, we say R has characteristic zero.

Example: R
If ke N={1,2,3,...}, then

k-1=k+#0.

Thus R is a ring of characteristic zero.




EXAMPLES

Example: Z /27

If a € Z/2Z, then

2-a=a+a=2a=0.
Thus, Z /27 is a ring of characteristic 2.

Example: Z/nZ

If @ € Z/nZ, then

Thus, Z/nZ is a ring of characteristic n.




EXAMPLES

Example: Mat(2,R)

For each k € N, we have

In particular,
E-(59)=(5%) #(88)-

Thus, Mat(2,R) is a ring of characteristic zero.



COMPUTING THE CHARACTERISTIC OF A RING

m Calculating the characteristic of a ring using the definition can
be tedious, especially for rings with many elements or difficult
descriptions.

m Fortunately, there’s a simpler method for rings with a unity
element.

m Instead of verifying that » € R for all »r € R, and finding the
smallest such k, we can focus on the unity element.

m That is, the next result shows that it is sufficient to check the
case r = 1p.



CHARACTERISTIC OF A RING WITH UNITY e

Lemma [Characteristic of a ring with unity|

Let R be a ring with unity e.
Then the characteristic of R is the least k£ € N such that

k'CZOR.

Proof.
Let R be a ring with unity e, and let k € N be the least number in

N such that
k-e= OR.

Let us show that the characteristic of R is k.



CHARACTERISTIC OF A RING WITH UNITY e—PART

2

Goal. For all r € R, we must show

k-r=0g,

and also k is the least number in N with this property.
In fact,

k-r=k-(e-r)=(k-e)-r=0r-7=0g.v




CHARACTERISTIC OF A RING WITH UNITY e-PART
3

Let us show k is the least such number.

Suppose ¢ € N is such that ¢ < k but

£-r=0g, for all r € R.

In particular
{-e=0g,

contradicting the minimality of k.

Thus, k is the least such positive number. v/ O



COMPUTING THE CHARACTERISTIC OF A RING

WITH UNITY

By the previous lemma, to compute the characteristic of a
ring R with unity, we need to identify:

» The unity element 1p,
» The zero element Og.

m Next, find the smallest positive integer k such that

lp+1p+:---+1p =0g.

k times

m If such a k exists, then Char(R) = k.
m If no such k exists, then Char(R) = 0.




CHARACTERISTIC OF C

Example

Let us find the characteristic of the field of complex numbers C.
Since C has unity, we can use the previous lemma.

m Zero: The zero of C is Oc = 0.
m Unity: The unity of Cis 1¢ = 1.
Thus, it suffices to find the smallest positive k& € Z such that
k-1=0.
Clearly, k-1 =k > 0 if k is positive.
Thus, Char(C) = 0.




CHARACTERISTIC OF Z/nZ

Example
We can use the lemma to quickly show that Char(Z/nZ) = n.

m Zero: The zero of Z/nZ is 07,7 = 0.
m Unity: The unity of Z/nZ is 1z, = 1.

We must find the smallest positive k € Z such that k-1 = 0.
Since n-1=mn =0, we see that Char(Z/nZ) > n.

However, if 0 < k < n, then k-1 =k # 0.

Thus, Char(Z/nZ) = n.




CHARACTERISTIC OF Zoy X Zr

Let us find Char(Zs x Zr).
m Zero: The zero of Zy x Zz is 0z,xz, = ([0]2, [07])*.

m Unity: The unity of Zg X Z7 is 12,%x2, = ([1]2, [1}7).

Now, we must find the smallest positive k € Z such that

k- ([1]2, [1]7) = ([0]2, [0]7).

'Here, [a]> means ¢ mod 2 and [b]; means b mod 7.
18



CHARACTERISTIC OF Zoy X Z7 - PART 2

Example

We must find the smallest positive k € Z such that

We have
2 ([1]2, [1]7) = ([2]2, [2]7) = ([0]2, [2]7)
3+ ([t]2, [1]7) = ([3]2, [8]7) = ([1]2, [3]7)
4- (]2, [1]7) = ([4l2, [4]7) = ([0]2, [4]7)

We see that & - ([1]2, [1]7) = ([0]2, [0]7) precisely when k is a
multiple of 2 and 7.

We need the smallest such k, so it is the least common multiple:
k = 14. Thus, Char(Zg x Z7) = 14.




CHARACTERISTIC OF AN INTEGRAL DOMAIN

m Let us explore the possible characteristics of an integral
domain.

m For example, we will discover why there is no integral domain
with characteristic 4, but there is one with characteristic 3.

m First, let us recall the definition of an integral domain.




REMINDER: INTEGRAL DOMAINS

axb="bx*xa

Multiplicative unity 1p

A commutative ring R with unity element is called an
integral domain if it has no zero divisors.

a # 0 for which there is b # 0 such that axb =0




CHARACTERISTIC OF INTEGRAL DOMAINS

Proposition.

The characteristic of an integral domain D is either zero or a prime.

Proof.

Let D be an integral domain. Then, in particular, D has unity 1p.

If D has characteristic zero, we are done.

Assume D has characteristic K € N. We must show that k is prime.

Recall that the characteristic k of D is the least positive integer
satisfying
k-d=0p, forall d € D.

Since 1-1p = 1p # 0p, we have k > 1.




CHARACTERISTIC OF INTEGRAL DOMAINS—PART 2

Assume by contradiction that k is not prime.

Then k£ = ab for some a,b € Nwith 1l <a<kand 1 <b<k.

Because k- 1p = 0p, we have
(a-1p)-(b-1p) = (ab)-1p =k -1p = 0p.
As D is an integral domain, it has no zero divisors. Thus, either
a-1p=0p or b-1p=0p.

Lemma [Char. of rings with 1|: If alp = Op, then the
characteristic of R is at most a < k, a contradiction.

Similarly, b1p = Op yields a contradiction. O



POLYNOMIAL RINGS




POLYNOMIAL RINGS

m [n the next lecture, we will explore how to construct fields of a
fixed cardinality.

m To achieve this, we will use polynomial rings.

m Let us prepare by revisiting the definition of polynomial rings
and the degree of a polynomial, and by exploring some
examples.

m Finally, we will prove that if R is commutative with unity,
then so is R[z].




POLYNOMIAL RINGS

Definition
Let R be a commutative ring with unity 1p.
The set

Rlz] = {ane™ +---+ a1z +ag | a; € R,n € NU{0}}

with operations

f(@) +9(x) = (f + 9)(2)
f(@)g(z) = (fg)(x)

is a ring called a polynomial ring.




EXAMPLES

Examples: Z[z], Q[z], R[z] and Clz]

m Z[z] : polynomials with integer coefficients,
m Q[z]: polynomials with rational coefficients,

m R[z|: polynomials with real coefficients,

m Clz]: polynomials with complex coefficients.




EXAMPLE

The polynomial ring %[w]

nZ—Z[a:] is the ring of polynomials over Z/nZ.

Examples of elements of Z[z]:

~—

fl@) = -1

242
gz) =22 =122

Computations are as usual (but coefficients are taken mod n):

(n—1) 22 +2) + (z%)
—1+1) 22 +2

I
—~

f(x) +g(x)

[
=]

Il

o ol 3
HM =
+ +



REMINDER: DEGREE OF A POLYNOMIAL

Degree of a polynomial

Let f(x) € R[z]. Then

fl@)=ag+ar1x+ -+ apz",
with a; € R, a,, #0, and n € {0,1,2,...}.

The degree of f is n. Le., the highest power of z in f(x).

Notation: deg(f) = n.




EXAMPLES

Examples in R[z]

1. (
2. deg(
3. (
4. deg(1 + 2z + 5z% — 23 + 2° — 228) = 8.
Examples in % T
2) —9
2. deg(22® — 3z + 1) = 1 because

222 - 30 4+1=02>-Tz+1=a+1.




THEOREM

Theorem.

If R is a commutative ring with unity, then so is R[z].

Moreover, R can be regarded a subring of R[z].

Proof.

To show that R[z] is commutative, we must show that

for all f(z),g(z) € Rz].




PROOF OF THEOREM—PART 2

Write

f(x) =ap+ a1z + - + anz™,
g(x) = bo +b1x + - -+ + bypz™.
Then
f(@)g(z) = (a0 + a1z + -+ anz™) - (b + b1z + - - - + bpz™)
= agbg + (agh1 + a1bg) - = + - - - + (apby) - ™.

R is commutative: ab = ba for all a,b € R. Thus

f(z)g(x) = boag + (brag + boay) - x + - - - + (bpay,) - ™"
=(bp+brx+ -+ bpa™) (ap + a1z + - + apx")
= g(z)f ().



PROOF OF THEOREM—PART 3

Proof that R[z]| has unity.

If R has unity 1p, then the constant polynomial

is the unity of R[z]:

1(z) - f(x) =1r - (ap + a1z + - - - + apz™)
=(1r-a0) + (lr-a)z+ -+ (1r - an)z"
=ap+az+ -+ apz"

= f(x).

Similarly,




PROOF OF THEOREM—PART 4

R is a subring of R[z]

If r € R, we can define the constant polynomial
r(z)=r.

We can then regard the elements of R as elements of R[z].

With this identification, we can consider R as a subring of R[z].




NEXT LECTURE

Next time...

m Polynomial rings over fields.
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