## SLIDES WEEK 23 Algebraic Structures

PAULA LINS

DEEP DIVE SLIDES

UNIVERSITY OF LINCOLN

2024/25

## DETAILED SLIDES

## Deep Dive Slides

- These slides are similar to the lecture slides but include added motivations and explanations to enhance your learning experience.
- They are self-contained for independent study and do not provide additional material.
- Optional proofs are included (marked as optional).
- If you prefer a straightforward approach, you can study from the lecture slides without missing anything.

## WEEK 21: GOALS

### Last time:

- $\blacksquare$  Ideals,
- Principal Ideals,
- Quotient Rings,
- Field of Fractions.

## Today:

- Characteristic of a ring,
- Polynomial Rings.

## CHARACTERISTIC OF A RING

# MULTIPLICATION OF ELEMENTS OF RINGS BY INTEGERS

### Definition.

Let R be a ring.

Let  $k \in \mathbb{N}$  (i.e. k is a positive integer) and  $r \in R$ , then

$$kr = \underbrace{r + r + \dots + r}_{k \text{ times}}.$$

If k is a negative integer, then

$$kr = \underbrace{-r - r - \cdots - r}_{|k| \text{ times}}.$$

## Example.

If  $R = \mathbb{R}$ , we know that

$$kr = \underbrace{r + r + \dots + r}_{k \text{ times}},$$

$$(-k)r = \underbrace{-r - r - \dots - r}_{k \text{ times}},$$

for all  $k \in \mathbb{N}$  and all  $r \in \mathbb{R}$ .

# Multiplication of elements of rings by integers

- The previous definition might seem a bit redundant at first.
- That is because we are used to  $k \cdot r$  meaning r added k times.
- However, ring elements might not be numbers.
- $\blacksquare$  E.g., imagine we have a ring R whose elements are fruits.
- In this case, what does  $k \cdot F$  mean for a fruit F?
- We might not know "three times F", but we know that since R is a ring, it has a sum.
- In other words, when defining R, we must also define what  $F_1 + F_2$  means for any two fruits  $F_1$ ,  $F_2$  in R.
- Thus,  $3 \cdot F = F + F + F$  is also given by this operation.
- That means that  $3 \cdot F$  is F operated with itself three times using the ring additive operation.

5

### Example

Let  $R = Mat(2, \mathbb{R})$  and  $k \in \mathbb{N}$ .

**Question:** What is  $k \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ ?

By definition,

$$k \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \underbrace{\begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} a & b \\ c & d \end{pmatrix} + \cdots + \begin{pmatrix} a & b \\ c & d \end{pmatrix}}_{k \text{ times}} = \begin{pmatrix} ka & kb \\ kc & kd \end{pmatrix}.$$

## CHARACTERISTIC OF A RING

- Knowing the **characteristic** of a ring can simplify calculations within the ring.
- For example, in a ring with characteristic n > 0, any element added to itself n times will result in zero.
- The characteristic also helps in classifying and understanding rings.
- For instance, fields of prime characteristic *p* have different properties compared to fields of characteristic 0, influencing the types of polynomials that can be solved, for instance.
- In the next slides, we will define the characteristic of a ring and provide examples of characteristics from rings we are already familiar with.

## CHARACTERISTIC OF A RING

## Definition.

Let R be a ring. Assume there is a **positive** integer k such that

 $kr = 0_R$ , for all  $\mathbf{r} \in \mathbf{R}$ .

Then the **least** such k is called the **characteristic** of R. If no such k exists, we say R has **characteristic zero**.

#### Example: $\mathbb{R}$

If  $k \in \mathbb{N} = \{1, 2, 3, ...\}$ , then

$$k \cdot 1 = k \neq 0.$$

Thus  $\mathbb{R}$  is a ring of characteristic zero.

### Example: $\mathbb{Z}/2\mathbb{Z}$

If  $\overline{a} \in \mathbb{Z}/2\mathbb{Z}$ , then

$$2 \cdot \overline{a} = \overline{a} + \overline{a} = \overline{2a} = \overline{0}.$$

Thus,  $\mathbb{Z}/2\mathbb{Z}$  is a ring of characteristic 2.

Example:  $\mathbb{Z}/n\mathbb{Z}$ 

If  $\overline{a} \in \mathbb{Z}/n\mathbb{Z}$ , then

$$n \cdot \overline{a} = \underbrace{\overline{a} + \overline{a} + \dots + \overline{a}}_{n \text{ times}} = \overline{na} = \overline{0}.$$

Thus,  $\mathbb{Z}/n\mathbb{Z}$  is a ring of **characteristic n**.

## Example: $Mat(2, \mathbb{R})$

For each  $k \in \mathbb{N}$ , we have

$$k \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} ka & kb \\ kc & kd \end{pmatrix}.$$

In particular,

$$k \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix} \neq \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

Thus,  $Mat(2, \mathbb{R})$  is a ring of **characteristic zero**.

- Calculating the characteristic of a ring using the definition can be tedious, especially for rings with many elements or difficult descriptions.
- Fortunately, there's a simpler method for rings with a **unity** element.
- Instead of verifying that  $r \in R$  for all  $r \in R$ , and finding the smallest such k, we can focus on the unity element.
- That is, the next result shows that it is sufficient to check the case  $r = 1_R$ .

## Lemma [Characteristic of a ring with unity]

Let R be a ring with unity e. Then the characteristic of R is the **least**  $k \in \mathbb{N}$  such that

 $k \cdot e = 0_R.$ 

#### Proof.

Let R be a ring with unity e, and let  $k\in\mathbb{N}$  be the least number in  $\mathbb N$  such that

 $k \cdot e = 0_R.$ 

Let us show that the characteristic of R is k.

# Characteristic of a ring with unity e-Part 2

#### Proof.

**Goal.** For all  $r \in R$ , we must show

 $k \cdot r = 0_R,$ 

and also k is the least number in  $\mathbb{N}$  with this property. In fact,

$$k \cdot r = k \cdot (e \cdot r) = (k \cdot e) \cdot r = 0_R \cdot r = 0_R \cdot \checkmark$$

# Characteristic of a ring with unity e-Part 3

#### Proof.

Let us show k is the least such number.

Suppose  $\ell \in \mathbb{N}$  is such that  $\ell < k$  but

 $\ell \cdot r = 0_R$ , for all  $r \in R$ .

In particular

 $\ell \cdot e = 0_R,$ 

contradicting the minimality of k.

Thus, k is the least such positive number.  $\checkmark$ 

## COMPUTING THE CHARACTERISTIC OF A RING WITH UNITY

- By the previous lemma, to compute the characteristic of a ring *R* with unity, we need to identify:
  - The unity element  $1_R$ ,
  - ▶ The zero element  $0_R$ .

• Next, find the smallest **positive** integer k such that

$$\underbrace{1_R + 1_R + \dots + 1_R}_{k \text{ times}} = 0_R.$$

- If such a k exists, then  $\operatorname{Char}(R) = k$ .
- If no such k exists, then  $\operatorname{Char}(R) = 0$ .

#### Example

Let us find the characteristic of the field of complex numbers  $\mathbb{C}$ . Since  $\mathbb{C}$  has unity, we can use the previous lemma.

- **Zero:** The zero of  $\mathbb{C}$  is  $0_{\mathbb{C}} = 0$ .
- Unity: The unity of  $\mathbb{C}$  is  $1_{\mathbb{C}} = 1$ .

Thus, it suffices to find the smallest **positive**  $k \in \mathbb{Z}$  such that  $k \cdot 1 = 0$ .

Clearly,  $k \cdot 1 = k > 0$  if k is positive.

Thus,  $\operatorname{Char}(\mathbb{C}) = 0$ .

#### Example

We can use the lemma to quickly show that  $\operatorname{Char}(\mathbb{Z}/n\mathbb{Z}) = n$ .

- **Zero:** The zero of  $\mathbb{Z}/n\mathbb{Z}$  is  $0_{\mathbb{Z}/n\mathbb{Z}} = \overline{0}$ .
- Unity: The unity of  $\mathbb{Z}/n\mathbb{Z}$  is  $1_{\mathbb{Z}/n\mathbb{Z}} = \overline{1}$ .

We must find the smallest **positive**  $k \in \mathbb{Z}$  such that  $k \cdot \overline{1} = \overline{0}$ . Since  $n \cdot \overline{1} = \overline{n} = \overline{0}$ , we see that  $\operatorname{Char}(\mathbb{Z}/n\mathbb{Z}) \ge n$ . However, if  $0 \le k < n$ , then  $k \cdot \overline{1} = \overline{k} \ne \overline{0}$ . Thus,  $\operatorname{Char}(\mathbb{Z}/n\mathbb{Z}) = n$ .

## Characteristic of $\mathbb{Z}_2 \times \mathbb{Z}_7$

#### Example

Let us find  $\operatorname{Char}(\mathbb{Z}_2 \times \mathbb{Z}_7)$ .

- **Zero:** The zero of  $\mathbb{Z}_2 \times \mathbb{Z}_7$  is  $0_{\mathbb{Z}_2 \times \mathbb{Z}_7} = ([0]_2, [0_7])^1$ .
- Unity: The unity of  $\mathbb{Z}_2 \times \mathbb{Z}_7$  is  $1_{\mathbb{Z}_2 \times \mathbb{Z}_7} = ([1]_2, [1]_7)$ .

Now, we must find the smallest **positive**  $k \in \mathbb{Z}$  such that

 $k \cdot ([1]_2, [1]_7) = ([0]_2, [0]_7).$ 

<sup>1</sup>Here,  $[a]_2$  means  $a \mod 2$  and  $[b]_7$  means  $b \mod 7$ .

## Characteristic of $\mathbb{Z}_2\times\mathbb{Z}_7$ - Part 2

## Example

We must find the smallest **positive**  $k \in \mathbb{Z}$  such that

 $k \cdot ([1]_2, [1]_7) = ([0]_2, [0]_7).$ 

We have

$$2 \cdot ([1]_2, [1]_7) = ([2]_2, [2]_7) = ([0]_2, [2]_7)$$
  

$$3 \cdot ([1]_2, [1]_7) = ([\overline{3}]_2, [\overline{3}]_7) = ([1]_2, [\overline{3}]_7)$$
  

$$4 \cdot ([1]_2, [1]_7) = ([\overline{4}]_2, [\overline{4}]_7) = ([0]_2, [\overline{4}]_7)$$

We see that  $k \cdot ([1]_2, [1]_7) = ([0]_2, [0]_7)$  precisely when k is a multiple of 2 and 7.

We need the **smallest** such k, so it is the least common multiple: k = 14. Thus,  $Char(\mathbb{Z}_2 \times \mathbb{Z}_7) = 14$ .

- Let us explore the possible characteristics of an integral domain.
- For example, we will discover why there is no integral domain with characteristic 4, but there is one with characteristic 3.
- First, let us recall the definition of an integral domain.

## Reminder: Integral domains



## CHARACTERISTIC OF INTEGRAL DOMAINS

### Proposition.

The characteristic of an integral domain D is either zero or a prime.

#### Proof.

Let D be an integral domain. Then, in particular, D has unity  $1_D$ . If D has characteristic zero, we are done. Assume D has characteristic  $k \in \mathbb{N}$ . We must show that k is prime.

Recall that the characteristic k of D is the least positive integer satisfying

 $k \cdot d = 0_D$ , for all  $d \in D$ .

Since  $1 \cdot 1_D = 1_D \neq 0_D$ , we have k > 1.

## Characteristic of integral domains–Part 2 $\,$

#### Proof.

Assume by contradiction that k is not prime.

Then k = ab for some  $a, b \in \mathbb{N}$  with 1 < a < k and 1 < b < k. Because  $k \cdot 1_D = 0_D$ , we have

$$(a \cdot 1_D) \cdot (b \cdot 1_D) = (ab) \cdot 1_D = k \cdot 1_D = 0_D.$$

As D is an integral domain, it has no zero divisors. Thus, either

$$a \cdot 1_D = 0_D$$
 or  $b \cdot 1_D = 0_D$ .

**Lemma [Char. of rings with 1]:** If  $a1_D = 0_D$ , then the characteristic of R is at most a < k, a contradiction.

Similarly,  $b1_D = 0_D$  yields a contradiction.

## POLYNOMIAL RINGS

- In the next lecture, we will explore how to construct fields of a fixed cardinality.
- To achieve this, we will use **polynomial rings**.
- Let us prepare by revisiting the definition of polynomial rings and the degree of a polynomial, and by exploring some examples.
- Finally, we will prove that if R is commutative with unity, then so is R[x].

## Definition

Let R be a commutative ring with unity  $1_R$ . The set

$$R[x] = \{a_n x^n + \dots + a_1 x + a_0 \mid a_i \in R, n \in \mathbb{N} \cup \{0\}\}\$$

with operations

$$f(x) + g(x) = (f + g)(x)$$
$$f(x)g(x) = (fg)(x)$$

is a ring called a **polynomial ring**.

## Examples: $\mathbb{Z}[x]$ , $\mathbb{Q}[x]$ , $\mathbb{R}[x]$ and $\mathbb{C}[x]$

- $\blacksquare \ \mathbb{Z}[x]$  : polynomials with integer coefficients,
- $\mathbb{Q}[x]$ : polynomials with rational coefficients,
- $\blacksquare$   $\mathbb{R}[x]:$  polynomials with real coefficients,
- $\mathbb{C}[x]$ : polynomials with complex coefficients.

## The polynomial ring $\frac{\mathbb{Z}}{n\mathbb{Z}}[x]$

 $\frac{\mathbb{Z}}{n\mathbb{Z}}[x] \text{ is the ring of polynomials over } \mathbb{Z}/n\mathbb{Z}.$ Examples of elements of  $\frac{\mathbb{Z}}{n\mathbb{Z}}[x]$ :

$$f(x) = (\overline{n-1}) \cdot x^2 + \overline{2}$$
$$g(x) = x^2 = \overline{1} \cdot x^2.$$

Computations are as usual (but coefficients are taken mod n):

$$f(x) + g(x) = ((\overline{n-1}) \cdot x^2 + \overline{2}) + (x^2)$$
  
=  $(\overline{n-1} + \overline{1}) \cdot x^2 + \overline{2}$   
=  $\overline{n} \cdot x^2 + \overline{2}$   
=  $\overline{0} \cdot x^2 + \overline{2}$   
=  $\overline{2}.$ 

### Degree of a polynomial

Let  $f(x) \in R[x]$ . Then

$$f(x) = a_0 + a_1 x + \dots + a_n x^n,$$

with  $a_i \in R$ ,  $a_n \neq 0$ , and  $n \in \{0, 1, 2, ...\}$ .

The **degree** of f is n. I.e., the highest power of x in f(x).

Notation:  $\deg(f) = n$ .

## EXAMPLES

## Examples in $\mathbb{R}[x]$

- 1.  $\deg(x^2) = 2$ ,
- 2.  $\deg(2x^3 3x + 1) = 3$ ,
- 3.  $\deg(1) = 0$ ,
- 4. deg $(1 + 2x + 5x^2 x^3 + x^5 2x^8) = 8$ .

## Examples in $\frac{\mathbb{Z}}{2\mathbb{Z}}[x]$

1.  $\deg(x^2) = 2$ , 2.  $\deg(\overline{2}x^3 - \overline{3}x + \overline{1}) = 1$  because

$$\overline{2}x^3 - \overline{3}x + \overline{1} = \overline{0}x^3 - \overline{1}x + \overline{1} = x + \overline{1}.$$

#### Theorem.

If R is a commutative ring with unity, then so is R[x].

Moreover, R can be regarded a subring of R[x].

## Proof.

To show that R[x] is commutative, we must show that

f(x)g(x) = g(x)f(x),

for all  $f(x), g(x) \in R[x]$ .

## Proof of theorem–Part 2

## Proof.

#### Write

$$f(x) = a_0 + a_1 x + \dots + a_n x^n, g(x) = b_0 + b_1 x + \dots + b_m x^m.$$

Then

$$f(x)g(x) = (a_0 + a_1x + \dots + a_nx^n) \cdot (b_0 + b_1x + \dots + b_mx^m)$$
  
=  $a_0b_0 + (a_0b_1 + a_1b_0) \cdot x + \dots + (a_nb_m) \cdot x^{n+m}.$ 

R is commutative: ab = ba for all  $a, b \in R$ . Thus

$$f(x)g(x) = b_0a_0 + (b_1a_0 + b_0a_1) \cdot x + \dots + (b_ma_n) \cdot x^{m+n}$$
  
=  $(b_0 + b_1x + \dots + b_mx^m) \cdot (a_0 + a_1x + \dots + a_nx^n)$   
=  $g(x)f(x)$ .

31

## Proof that R[x] has unity.

If R has unity  $1_R$ , then the constant polynomial

$$\mathbf{1}(x) = 1_R$$

is the unity of R[x]:

$$\begin{aligned} \mathbf{1}(x) \cdot f(x) &= \mathbf{1}_R \cdot (a_0 + a_1 x + \dots + a_n x^n) \\ &= (\mathbf{1}_R \cdot a_0) + (\mathbf{1}_R \cdot a_1) x + \dots + (\mathbf{1}_R \cdot a_n) x^n \\ &= a_0 + a_1 x + \dots + a_n x^n \\ &= f(x). \end{aligned}$$

Similarly,

$$f(x) \cdot \mathbf{1}(x) = f(x).$$

#### R is a subring of R[x]

If  $r \in R$ , we can define the constant polynomial

$$\mathbf{r}(x) = r.$$

We can then regard the elements of R as elements of R[x].

With this identification, we can consider R as a subring of R[x].

#### Next time..

■ Polynomial rings over fields.