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Detailed Slides

Deep Dive Slides

These slides are similar to the lecture slides but include added

motivations and explanations to enhance your learning

experience.

They are self-contained for independent study and do not

provide additional material.

Optional proofs are included (marked as optional).

If you prefer a straightforward approach, you can study from

the lecture slides without missing anything.
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Week 21: Goals

Last time:

Ideals,

Principal Ideals,

Quotient Rings,

Field of Fractions.

Today:

Characteristic of a ring,

Polynomial Rings.
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Characteristic of a ring



Multiplication of elements of rings by

integers

De�nition.

Let R be a ring.

Let k ∈ N (i.e. k is a positive integer) and r ∈ R, then

kr = r + r + · · ·+ r︸ ︷︷ ︸
k times

.

If k is a negative integer, then

kr = −r − r − · · · − r︸ ︷︷ ︸
|k| times

.
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Example: R

Example.

If R = R, we know that

kr = r + r + · · ·+ r︸ ︷︷ ︸
k times

,

(−k)r = −r − r − · · · − r︸ ︷︷ ︸
k times

,

for all k ∈ N and all r ∈ R.
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Multiplication of elements of rings by

integers

The previous de�nition might seem a bit redundant at �rst.

That is because we are used to k · r meaning r added k times.

However, ring elements might not be numbers.

E.g., imagine we have a ring R whose elements are fruits.

In this case, what does k · F mean for a fruit F?

We might not know "three times F", but we know that since R is a

ring, it has a sum.

In other words, when de�ning R, we must also de�ne what F1 + F2

means for any two fruits F1, F2 in R.

Thus, 3 · F = F + F + F is also given by this operation.

That means that 3 ·F is F operated with itself three times using the

ring additive operation.
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Example: Mat(2,R)

Example

Let R = Mat(2,R) and k ∈ N.

Question: What is k ·
(
a b
c d

)
?

By de�nition,

k ·
(
a b
c d

)
=

(
a b
c d

)
+
(
a b
c d

)
+ · · ·+

(
a b
c d

)︸ ︷︷ ︸
k times

=
(
ka kb
kc kd

)
.
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Characteristic of a ring

Knowing the characteristic of a ring can simplify calculations

within the ring.

For example, in a ring with characteristic n > 0, any element

added to itself n times will result in zero.

The characteristic also helps in classifying and understanding

rings.

For instance, �elds of prime characteristic p have di�erent

properties compared to �elds of characteristic 0, in�uencing
the types of polynomials that can be solved, for instance.

In the next slides, we will de�ne the characteristic of a ring

and provide examples of characteristics from rings we are

already familiar with.
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Characteristic of a ring

De�nition.

Let R be a ring.

Assume there is a positive integer k such that

kr = 0R, for all r ∈ R.

Then the least such k is called the characteristic of R.

If no such k exists, we say R has characteristic zero.

Example: R
If k ∈ N = {1, 2, 3, . . .}, then

k · 1 = k ̸= 0.

Thus R is a ring of characteristic zero.
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Examples

Example: Z/2Z
If a ∈ Z/2Z, then

2 · a = a+ a = 2a = 0.

Thus, Z/2Z is a ring of characteristic 2.

Example: Z/nZ
If a ∈ Z/nZ, then

n · a = a+ a+ · · ·+ a︸ ︷︷ ︸
n times

= na = 0.

Thus, Z/nZ is a ring of characteristic n.
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Examples

Example: Mat(2,R)
For each k ∈ N, we have

k ·
(
a b
c d

)
=

(
ka kb
kc kd

)
.

In particular,

k · ( 1 0
0 1 ) =

(
k 0
0 k

)
̸= ( 0 0

0 0 ) .

Thus, Mat(2,R) is a ring of characteristic zero.
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Computing the characteristic of a ring

Calculating the characteristic of a ring using the de�nition can

be tedious, especially for rings with many elements or di�cult

descriptions.

Fortunately, there's a simpler method for rings with a unity
element.

Instead of verifying that r ∈ R for all r ∈ R, and �nding the

smallest such k, we can focus on the unity element.

That is, the next result shows that it is su�cient to check the

case r = 1R.
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Characteristic of a ring with unity e

Lemma [Characteristic of a ring with unity]

Let R be a ring with unity e.
Then the characteristic of R is the least k ∈ N such that

k · e = 0R.

Proof.

Let R be a ring with unity e, and let k ∈ N be the least number in

N such that

k · e = 0R.

Let us show that the characteristic of R is k.
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Characteristic of a ring with unity e�Part
2

Proof.

Goal. For all r ∈ R, we must show

k · r = 0R,

and also k is the least number in N with this property.

In fact,

k · r = k · (e · r) = (k · e) · r = 0R · r = 0R.✓
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Characteristic of a ring with unity e�Part
3

Proof.

Let us show k is the least such number.

Suppose ℓ ∈ N is such that ℓ < k but

ℓ · r = 0R, for all r ∈ R.

In particular

ℓ · e = 0R,

contradicting the minimality of k.

Thus, k is the least such positive number. ✓
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Computing the characteristic of a ring

with unity

By the previous lemma, to compute the characteristic of a
ring R with unity, we need to identify:

▶ The unity element 1R,

▶ The zero element 0R.

Next, �nd the smallest positive integer k such that

1R + 1R + · · ·+ 1R︸ ︷︷ ︸
k times

= 0R.

If such a k exists, then Char(R) = k.

If no such k exists, then Char(R) = 0.
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Characteristic of C

Example

Let us �nd the characteristic of the �eld of complex numbers C.
Since C has unity, we can use the previous lemma.

Zero: The zero of C is 0C = 0.

Unity: The unity of C is 1C = 1.

Thus, it su�ces to �nd the smallest positive k ∈ Z such that

k · 1 = 0.

Clearly, k · 1 = k > 0 if k is positive.

Thus, Char(C) = 0.

16 34



Characteristic of Z/nZ

Example

We can use the lemma to quickly show that Char(Z/nZ) = n.

Zero: The zero of Z/nZ is 0Z/nZ = 0.

Unity: The unity of Z/nZ is 1Z/nZ = 1.

We must �nd the smallest positive k ∈ Z such that k · 1 = 0.

Since n · 1 = n = 0, we see that Char(Z/nZ) ≥ n.

However, if 0 ≤ k < n, then k · 1 = k ̸= 0.

Thus, Char(Z/nZ) = n.
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Characteristic of Z2 × Z7

Example

Let us �nd Char(Z2 × Z7).

Zero: The zero of Z2 × Z7 is 0Z2×Z7 = ([0]2, [07])
1.

Unity: The unity of Z2 × Z7 is 1Z2×Z7 = ([1]2, [1]7).

Now, we must �nd the smallest positive k ∈ Z such that

k · ([1]2, [1]7) = ([0]2, [0]7).

1Here, [a]2 means a mod 2 and [b]7 means b mod 7.
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Characteristic of Z2 × Z7 - Part 2

Example

We must �nd the smallest positive k ∈ Z such that

k · ([1]2, [1]7) = ([0]2, [0]7).

We have
2 · ([1]2, [1]7) = ([2]2, [2]7) = ([0]2, [2]7)

3 · ([1]2, [1]7) = ([3]2, [3]7) = ([1]2, [3]7)

4 · ([1]2, [1]7) = ([4]2, [4]7) = ([0]2, [4]7)

...

We see that k · ([1]2, [1]7) = ([0]2, [0]7) precisely when k is a

multiple of 2 and 7.

We need the smallest such k, so it is the least common multiple:

k = 14. Thus, Char(Z2 × Z7) = 14.
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Characteristic of an integral domain

Let us explore the possible characteristics of an integral

domain.

For example, we will discover why there is no integral domain

with characteristic 4, but there is one with characteristic 3.

First, let us recall the de�nition of an integral domain.

20 34



Reminder: Integral domains

A commutative

a ∗ b = b ∗ a

ring R with unity element

Multiplicative unity 1R

is called an

integral domain if it has no zero divisors

a ̸= 0 for which there is b ̸= 0 such that a ∗ b = 0

.

21 34



Characteristic of integral domains

Proposition.

The characteristic of an integral domain D is either zero or a prime.

Proof.

Let D be an integral domain. Then, in particular, D has unity 1D.

If D has characteristic zero, we are done.

Assume D has characteristic k ∈ N. We must show that k is prime.

Recall that the characteristic k of D is the least positive integer

satisfying

k · d = 0D, for all d ∈ D.

Since 1 · 1D = 1D ̸= 0D, we have k > 1.
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Characteristic of integral domains�Part 2

Proof.

Assume by contradiction that k is not prime.

Then k = ab for some a, b ∈ N with 1 < a < k and 1 < b < k.

Because k · 1D = 0D, we have

(a · 1D) · (b · 1D) = (ab) · 1D = k · 1D = 0D.

As D is an integral domain, it has no zero divisors. Thus, either

a · 1D = 0D or b · 1D = 0D.

Lemma [Char. of rings with 1]: If a1D = 0D, then the

characteristic of R is at most a < k, a contradiction.

Similarly, b1D = 0D yields a contradiction.
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Polynomial Rings



Polynomial rings

In the next lecture, we will explore how to construct �elds of a

�xed cardinality.

To achieve this, we will use polynomial rings.

Let us prepare by revisiting the de�nition of polynomial rings

and the degree of a polynomial, and by exploring some

examples.

Finally, we will prove that if R is commutative with unity,

then so is R[x].
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Polynomial Rings

De�nition

Let R be a commutative ring with unity 1R.

The set

R[x] = {anxn + · · ·+ a1x+ a0 | ai ∈ R,n ∈ N ∪ {0}}

with operations
f(x) + g(x) = (f + g)(x)

f(x)g(x) = (fg)(x)

is a ring called a polynomial ring.
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Examples

Examples: Z[x], Q[x], R[x] and C[x]

Z[x] : polynomials with integer coe�cients,

Q[x]: polynomials with rational coe�cients,

R[x]: polynomials with real coe�cients,

C[x]: polynomials with complex coe�cients.
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Example

The polynomial ring Z
nZ [x]

Z
nZ [x] is the ring of polynomials over Z/nZ.

Examples of elements of Z
nZ [x]:

f(x) = (n− 1) · x2 + 2

g(x) = x2 = 1 · x2.

Computations are as usual (but coe�cients are taken mod n):

f(x) + g(x) = ((n− 1) · x2 + 2) + (x2)

= (n− 1 + 1) · x2 + 2

= n · x2 + 2

= 0 · x2 + 2

= 2.
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Reminder: degree of a polynomial

Degree of a polynomial

Let f(x) ∈ R[x]. Then

f(x) = a0 + a1x+ · · ·+ anx
n,

with ai ∈ R, an ̸= 0, and n ∈ {0, 1, 2, . . . }.

The degree of f is n. I.e., the highest power of x in f(x).

Notation: deg(f) = n.
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Examples

Examples in R[x]

1. deg(x2) = 2,

2. deg(2x3 − 3x+ 1) = 3,

3. deg(1) = 0,

4. deg(1 + 2x+ 5x2 − x3 + x5 − 2x8) = 8.

Examples in Z
2Z [x]

1. deg(x2) = 2,

2. deg(2x3 − 3x+ 1) = 1 because

2x3 − 3x+ 1 = 0x3 − 1x+ 1 = x+ 1.
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Theorem

Theorem.

If R is a commutative ring with unity, then so is R[x].

Moreover, R can be regarded a subring of R[x].

Proof.

To show that R[x] is commutative, we must show that

f(x)g(x) = g(x)f(x),

for all f(x), g(x) ∈ R[x].
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Proof of theorem�Part 2

Proof.

Write
f(x) = a0 + a1x+ · · ·+ anx

n,

g(x) = b0 + b1x+ · · ·+ bmxm.

Then

f(x)g(x) = (a0 + a1x+ · · ·+ anx
n) · (b0 + b1x+ · · ·+ bmxm)

= a0b0 + (a0b1 + a1b0) · x+ · · ·+ (anbm) · xn+m.

R is commutative: ab = ba for all a, b ∈ R. Thus

f(x)g(x) = b0a0 + (b1a0 + b0a1) · x+ · · ·+ (bman) · xm+n

= (b0 + b1x+ · · ·+ bmxm) · (a0 + a1x+ · · ·+ anx
n)

= g(x)f(x).
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Proof of theorem�Part 3

Proof that R[x] has unity.

If R has unity 1R, then the constant polynomial

1(x) = 1R

is the unity of R[x]:

1(x) · f(x) = 1R · (a0 + a1x+ · · ·+ anx
n)

= (1R · a0) + (1R · a1)x+ · · ·+ (1R · an)xn

= a0 + a1x+ · · ·+ anx
n

= f(x).

Similarly,

f(x) · 1(x) = f(x).
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Proof of theorem�Part 4

R is a subring of R[x]

If r ∈ R, we can de�ne the constant polynomial

r(x) = r.

We can then regard the elements of R as elements of R[x].

With this identi�cation, we can consider R as a subring of R[x].
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Next lecture

Next time...

Polynomial rings over �elds.
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