MTH2004M Differential Equations

Chapter 2 First Order Differential Equations

- Geometrical Interpretation of Solutions
- **Separable Differential Equations**
- **Linear Differential Equations**

つへへ

Recall: Check List for First Order Equations

Tackling differential equations check list:

- **1 Classify** our differential equation
	- *first-order, ordinary:* $\frac{dy}{dx} = f(x, y)$
- ² Choose a **method** of solution
	- *separation of variables:* $\frac{dy}{dx} = g(x)h(y)$
- ³ Derive **implicit** of **explicit** families of solutions
- ⁴ Apply an **initial condition** to get a particular solution
- ⁵ Sketch/plot the **solution curve**
- ⁶ Determine the **interval of validity**

 QQ

Separable Differential Equations

Classification

- Ordinary derivatives with respect to one variable
- **•** First order highest derivative is order one

Definition A first order ordinary **separable** differential equation has the form

$$
\frac{dy}{dx} = g(x)h(y)
$$

ぼう メモト

B

 QQ

Separation of Variables

Definition A **separable** differential equation has the form

$$
\frac{dy}{dx}=g(x)h(y)
$$

We like separable equations, because we can rearrange them and simply **integrate** to solve

$$
\frac{1}{h(y)}dy = g(x)dx
$$
, first rearrange
\n
$$
\Rightarrow \int \frac{1}{h(y)}dy = \int g(x)dx
$$
, then integrate
\n
$$
\Rightarrow H(y) = G(x) + c
$$

Here *H*(*y*) is the anti derivative of 1/*h*(*y*) and $G(x)$ is the anti derivative of $g(x)$

イロト イ押 トイヨ トイヨト

÷. QQ

Modelling with Separable Equations

Suspension Bridges Consider the IVP

$$
\frac{dy}{dx}=\frac{\rho x}{T}; \qquad y(0)=a
$$

This is model for the shape of a suspension bridge, where ρ is the weight of the cable and *T* is the tension to be determined.

Solve the differential equation to determine the shape of the bridge.

What other condition can we apply to find *[T](#page-3-0)*? \equiv 2990

Modelling with Separable Equations

Chemical Reactions Consider the IVP

$$
\frac{dA}{dt}=-A^2;\qquad A(0)=A_0
$$

This is a model for some substance *A* reacting into some substance *B*.

We require $A(t) + B(t) = A_0$ to conserve mass.

Solve the differential equation to find the time at which 50% of the substance has reacted.

Check your answer by plotting $A(t)$ and $B(t)$ for $A_0 = 1$ on desmos.

KOD KAP KED KED E LORO

Modelling with Separable Equations

Population Model Consider the IVP

$$
\frac{dP}{dt} = k \cos t \qquad P(0) = 1
$$

where *k* is a positive constant.

This is model for some population *P*(*t*).

By solving the differential equation, consider what kind of population this describes?

Use desmos to understand how *k* influences the population dynamics.

イロト イ押 トイヨ トイヨ トー

÷. QQ

Modeling with Separable Equations

Cooling a Cake Newton's law of cooling is given by

$$
\frac{dT}{dt}=k(T-T_a),
$$

where *k* is thermal diffusivity and *T^a* is the ambient temperature.

A cake is removed from the oven at 150*oC*. Three minutes later the temperature is 90*oC*.

Solve the ODE to calculate thermal diffusivity and consider how long it will take a cake to cool to room temperature.

イロト イ団ト イヨト イヨト

÷. QQ

Next week

Tackling differential equations check list:

- **1 Classify** our differential equation
	- *first-order, ordinary:* $\frac{dy}{dx} = f(x, y)$
- ² Choose a **method** of solution
	- *separation of variables:*
	- *integration factor method*
- ³ Derive **implicit** of **explicit** families of solutions
- ⁴ Apply an **initial condition** to get a particular solution
- ⁵ Sketch/plot the **solution curve**
- ⁶ Determine the **interval of validity**

 QQ