
MTH2002

Coding Theory

Semester A, 2024/25

Yuri Santos Rego

University of Lincoln

Week 3, Lecture 1

Today

Week 3: Goals

Week 3

1. Lecture 1: More geometry: solid spheres and symmetries.

2. Lecture 2: (Re)design strategies.

1 39

Last time

Recalling: Geometry of codes

De�nition 23 (Solid spheres)

Given a metric space X with distance function d and a positive
real number ε ∈ R>0, the solid sphere (or ball) or radius ε and
centre p ∈ X is the set de�ned by

Sε(p) = {x ∈ X | d(p, x) ≤ ε}.

In case X is �nite, the volume of the (solid) sphere Sε(p), is its
number of elements vol(Sε(p)) := #Sε(p).

Examples

9 / 51

x

y

p
ε

2 39

Recalling: The Distance Theorem

Distance Theorem (22)

Let C be a code with minimal distance dmin(C). Then the
following statements hold:

1. If t ∈ N and dmin(C) ≥ t+ 1, then C detects t errors.

2. If k ∈ N and dmin(C) ≥ 2k + 1, then C corrects k errors.

Corollary (27) to the Distance Theorem

Let C be a code and write d for dmin(C). Then C can detect up to
d− 1 errors and correct up to ⌊d−1

2 ⌋ errors, where ⌊ ⌋ : R → Z
denotes the integer part function: ⌊r⌋ = max{z ∈ Z | z ≤ r}.

3 39

Recalling: Parameters

De�nition 30 (Parameters of a code)

Let n, M , d and q be natural numbers. A code C called an
(n,M, d)q-code when

the underlying alphabet used for C has q symbols,

each codeword in C has length n,

C itself has M codewords in total (i.e., M = #C), and

d is its minimal distance (i.e., d = dmin(C)).

The numbers n, M , d and q are called parameters of C.

4 39

Recalling: Main Problem

Main Problem of Coding Theory

Given a q-ary alphabet, a length n, and a desired minimal distance
d, design an (n,M, d)q-code for which its total number of
codewords M is as large as possible.

Notation

Given q, n, and d as above, we write Mq(n, d) for the largest
possible such M .

Written in mathematical symbols,
Mq(n, d) := max{M ∈ N | M = #C for some (n,M, d)q-code C}.

5 39

More geometry: Solid spheres

and symmetries

On the `shape' of spheres

Motivating question: How `big' are spheres?

Example: Euclidean solid spheres

x

y

p
ε

The (usual) volume of a solid sphere Sε(p) of radius ε in
n-dimensional Euclidean space Rn has a formula:

vol(Sε(p)) =
πn/2

Γ(n2 + 1)
εn,

where Γ() is a special function that goes Γ(12 + 1) =
√
π
2 ,

Γ(22 + 1) = 1, Γ(32 + 1) = 3
√
π

4 , For instance, on the plane:
vol(Sε(p)) = πε2. In three dimensions: vol(Sε(p)) =

4
3πε

3.
6 39

On the `shape' of spheres

Is there a closed formula for vol(Sε(w)) = #Sε(w) in spaces of
words with the Hamming distance?

Lemma 35 (Volume of spheres in spaces of words)

Let A be a q-ary alphabet and let n ∈ N. Consider the space of

words An of length n as a metric space with the Hamming distance.

Then, given any word w ∈ An and integer radius ε ∈ N, the solid

sphere Sε(w) has volume vol(Sε(w)) = #Sε(w) given by the formula

#Sε(w) =

(
n

0

)
+

(
n

1

)
(q − 1) +

(
n

2

)
(q − 1)2 + . . .+

(
n

ε

)
(q − 1)ε

=

ε∑
i=0

(
n

i

)
(q − 1)i.

7 39

On the `shape' of spheres

Proof.

Goal: check that #Sε(w) =
∑ε

i=0

(
n
i

)
(q − 1)i.

Recall: Sε(w) = {x ∈ An | d(w, x) ≤ ε}. So we need only count how
many words are at Hamming distance i to w for each i from 0 to ε.

A word at Hamming distance i to w di�ers from w in exactly i
positions.

There are
(
n
i

)
ways to choose those di�ering positions.

At every such position, we can use up to q − 1 other symbols.

Thus changing each symbol in i chosen positions can be done
in (q − 1)i ways.

Altogether, we �nd exactly
(
n
i

)
(q − 1)i words at distance

exactly i from w.

8 39

On the `shape' of spheres

Proof.

Goal: check that #Sε(w) =
∑ε

i=0

(
n
i

)
(q − 1)i.

Recall: Sε(w) = {x ∈ An | d(w, x) ≤ ε}. So we need only count how
many words are at Hamming distance i to w for each i from 0 to ε.

Adding everything up gives

#Sε(w) =

(
n

0

)
+

(
n

1

)
(q − 1) +

(
n

2

)
(q − 1)2 + . . .+

(
n

ε

)
(q − 1)ε

=

ε∑
i=0

(
n

i

)
(q − 1)i,

as claimed.

9 39

On the `shape' of spheres

Corollary 36 (Spheres `look the same' everywhere)

Let A be a q-ary alphabet and let n ∈ N. Consider the space of

words An of length n as a metric space with the Hamming distance.

Then, given any pair of words v, w ∈ An and the same integer

radius ε ∈ N, the solid spheres Sε(w) and Sε(v) have exactly the

same number of elements. In symbols,

vol(Sε(w)) = vol(Sε(v)) ∀w, v ∈ An.

Proof.

The formula from Lemma 35 tells us that those volumes only
depend on the parameters n, q and on the radius ε, but not on the
centres of the spheres. Thus the values are equal.

10 39

On the `shape' of spheres

Pictorial example

Identify S1(002) below within F3
3:

000

001

002

010

011

012

020

021

022

100

101

102

110

111

112

120

121

122

200

201

202

210

211

212

220

221

222

11 39

Another application of geometry to codes

Recall: The Main Problem of Coding Theory is, given parameters n
(length), d (minimal distance) and q (number of symbols), to
design (n,M, d)q-codes where M (total number of codewords) is as
large as possible. Using spheres we get the following bound for M :

Theorem 37 (Sphere Packing Bound (a.k.a. Hamming bound))

Let C be an (n,M, d)q-code over a q-ary alphabet A, let ε(d) be the

value ε(d) := ⌊d−1
2 ⌋, and let c ∈ C be any codeword. Then the

parameter M = #C is bounded from above as follows:

M ≤ qn

vol(Sε(d)(c))
=

qn

#Sε(d)(c)
,

where the volume vol(Sε(d)(c)) = #Sε(d)(c) is taken in the space An

(with the Hamming distance).

12 39

Consequence of the Sphere Packing Bound

Recall: Mq(n, d) = largest possible number of codewords in a code
of length n with minimal distance d and over a q-ary alphabet.
Written in mathematical symbols,
Mq(n, d) := max{M ∈ N | M = #C for some (n,M, d)q-code C}.

Corollary 38

Writing ε(d) = ⌊d−1
2 ⌋, it holds

Mq(n, d) ≤
qnε(d)∑

i=0

(
n

i

)
(q − 1)i

 .

Proof.

Follows by combining Corollary 36 and Lemma 35 with the Sphere
Packing Bound Theorem.

13 39

Proof of Sphere Packing Bound

Proof of the Sphere Backing Bound Theorem.

Along the proof of the Distance Theorem, we have seen (cf.
Lemma 25) that for ε = ε(d) = ⌊d−1

2 ⌋ and any two codewords
v, w ∈ C, the solid spheres Sε(d)(v) and Sε(d)(w) are disjoint.

Hence, counting the elements of the union
⋃
w∈C

Sε(d)(w) ⊆ An,

we do not double count any elements of An. Therefore∑
w∈C

vol(Sε(d)(w)) =
∑
w∈C

#Sε(d)(w) ≤ #An = qn.

By Corollary 36 and Lemma 35, the spheres Sε(d)(w) have the
same number of elements. Thus, choosing c ∈ C, the sum

above becomes
∑
w∈C

#Sε(d)(w) =
∑
w∈C

#Sε(d)(c) =

#Sε(d)(c) ·
∑
w∈C

1 = #Sε(d)(c) ·#C = M · vol(Sε(d)(c)).

14 39

Applying the Sphere Packing Bound

The Sphere Packing Bound Theorem (SPBT) says: q-ary codes of
given length n and desired minimal distance d cannot be `too big'.

Example 39

Let C be a (5,M, 3)2-code. So q = 2, n = 5 and d = 3. Thus
ε(d) = ε(3) = ⌊3−1

2 ⌋ = ⌊22⌋ = 1. By Lemma 35, the volume of a
solid sphere of radius ε(d) = 1 around any codeword c ∈ C is

vol(Sε(d)(c)) =

ε(d)∑
i=0

(
n

i

)
(q − 1)i =

1∑
i=0

(
5

i

)
(2− 1)i

=

1∑
i=0

(
5

i

)
· 1 =

(
5

0

)
+

(
5

1

)
= 1 + 5 = 6.

By the SPBT, M ≤ 25

6 = 32
6 = 6.4, so #C = M ≤ 6 (because #C

is an integer).

15 39

Applying the Sphere Packing Bound

The Sphere Packing Bound Theorem (SPBT) says: q-ary codes of
given length n and desired minimal distance d cannot be `too big'.

Example 39

Let C be a (6,M, 1)11-code. So q = 11, n = 6 and d = 1. Thus
ε(d) = ε(1) = ⌊1−1

2 ⌋ = 0. The volume of a solid sphere of radius 0
around a codeword c ∈ C is 1 since this sphere only contains the
centre.
By the SPBT, #C = M ≤ 116

1 = 116, which is quite big!

State of knowledge: if we try to design an (n,M, d)q-code C, then
C has at most qn/vol(Sε(d)(c)) codewords (by the SPBT). Can C

have exactly qn

vol(Sε(d)(c))
elements?

16 39

SPBT & `nice' codes

Question: Can an (n,M, d)q-code have
qn

vol(Sε(d)(c))
codewords?

Answer

Sometimes yes, but not always!

`Sometimes': A = F3 = {0, 1, 2}, C = F2
3. This is a

(2, 9, 1)3-code. So ε(d) = ε(1) = ⌊1−1
2 ⌋ = 0, thus

vol(Sε(d)(c)) = 1 always, and qn = 32 = 9. Hence, in this case,

#C = M = 9 and qn

vol(Sε(d)(c))
= 9

1 = 9 = M⇝ equality!

`Not always': Consider a (2, 5, 2)5-code C, so M = 5 and
ε(d) = ε(2) = ⌊2−1

2 ⌋ = 0. The upper bound from the SPBT is
qn

vol(Sε(d)(c))
= 52

1 = 25, which is strictly larger than

#C = M = 5⇝ strict inequality M< qn

vol(Sε(d)(c))
.

17 39

SPBT & `nice' codes

If the number of elements of a code matches the upper bound
qn

vol(Sε(d)(c))
of the SPBT, this code deserves a name!

De�nition 40 (Perfect codes)

An (n,M, d)q-code C is said to be perfect if

M =
qn

vol(Sε(d)(c))

for some codeword c ∈ C, where ε(d) = ⌊d−1
2 ⌋.

Example 41

The `easy' code C = An over the alphabet A is perfect.

Hamming's original code (cf. Practicals, Week 2) is perfect.

18 39

SPBT & `nice' codes

Theorem 42 (Properties of perfect codes)

Let C be a perfect (n,M, d)q-code over the alphabet A. Then the

following hold:

1. There exists an integer k ≥ 0 such that 2k + 1 = d and so that

An is a disjoint union of the solid spheres Sk(w) with w

ranging over C. In symbols, An =
⊔
w∈C

Sk(c).

2. The minimal distance d cannot be even.

3. The code C corrects k errors.

Proof.

Note that, once we prove part (1), the other parts follow: (1)
implies (2) immediately because d = 2k + 1, an odd number. And
(1) implies (3) by the Distance Theorem.

19 39

SPBT & `nice' codes

Proof of part (1) of Theorem 42.

Set k = ε(d) = ⌊d−1
2 ⌋, which is a non-negative integer. As seen in

the proof of the SPBT, we have⋃
w∈C

Sk(w) ⊆ An,

and the union on the left hand side is disjoint by Lemma 25.
Now, the right hand side has qn elements. The left hand side has
exactly

∑
w∈C #Sk(w) elements, which is the same as

M · vol(Sε(d)(c)) as seen in the proof of the SPBT. But by
De�nition 40, qn = M · vol(Sε(d)(c)) =

∑
w∈C #Sk(w). Therefore

every element of An must be contained in one of the solid spheres
Sk(w), and we are not counting elements multiple times. In other
words,

⊔
w∈C Sk(w) = An.

20 39

Other `geometric' aspects:

Symmetries of codes

Symmetries

In maths (and sciences that use mathematics), it is quite useful to
understand the symmetries of objects: among many other useful
consequences, knowing the symmetries often allows us to
drastically reduce the complexity of problems we are investigating.

Broad informal `de�nition'

If O is a set that represents a mathematical object (for example, a
vector space, a �nite set, a polygon, a manifold, a �eld, ...), then
the symmetries of O are a (sub)set of bijective functions from O
to itself that preserve certain properties de�ning the object O.

This set of symmetries is sometimes denoted by Aut(O).

21 39

Symmetries

Examples

Year 1: If O is a vector space, then Aut(O) is the set of
bijective linear transformations of O.

Year 2: If O = a regular square, then Aut(O) = D8, the
dihedral group of order 8.

Now: If O is a metric space, then Aut(O) is the set of
isometries of O, i.e., those bijections that preserve distances.

Year 3: No matter what O is, its symmetries Aut(O) always
form a group! (The group operation is the composition of
functions.)

Year 4: If O is a di�erentiable manifold (for example Rn), then
Aut(O) is the set of di�eomorphisms of O, i.e., bijective
di�erentiable maps whose derivatives have nonzero
determinant.

22 39

Symmetries of codes

Here, we shall de�ne symmetries of a code to �nd out about codes
which `work exactly the same'. Before, we need some terminology.

De�nition 43 (Code matrix)

Given an (n,M, d)q-code C, its (full) code matrix � also written C
� is the (M × n)-matrix created by listing all the codewords of C
in rows.

Example 44

For C3 = {00000, 01101, 10110, 11011}, the code from Example 5
(�rst lecture), its code matrix is the four-by-�ve matrix

C3 =


0 0 0 0 0
1 1 0 1 1
0 1 1 0 1
1 0 1 1 0

 .

23 39

Symmetries of codes

De�nition 45 (Transformations, equivalence, and symmetries)

Given a code C ⊆ An, represented as its code matrix, a code
transformation applied to C is a (�nite) combination of operations
of the following types:

(a) permuting the columns of the code matrix C;

(b) permuting the symbols appearing in a given column of the
code matrix C.

After transforming a code C ⊆ An, we always obtain another code
C ′ ⊆ An, and we say that the resulting code C ′ and the original
code C are equivalent.

We call a code transformation a code symmetry (or code
automorphism) if C ′ = C. (That is, if the code transformation does
not result in a di�erent code.)

24 39

Symmetries of codes

Example 46

Let us transform C3 = {00000, 01101, 10110, 11011}:

C3 =


0 0 0 0 0
1 1 0 1 1
0 1 1 0 1
1 0 1 1 0



25 39

Symmetries of codes

Example 46

Let us transform C3 = {00000, 01101, 10110, 11011}:

C3 =


0 0 0 0 0
1 1 0 1 1
0 1 1 0 1
1 0 1 1 0

 C ′
3 =


0 0 0 0 0
1 1 0 1 1
0 0 1 1 1
1 1 1 0 0

2nd ↔ 4th columns

Step 1. First swap the second and fourth columns.

26 39

Symmetries of codes

Example 46

Let us transform C3 = {00000, 01101, 10110, 11011}:

C ′
3 =


0 0 0 0 0
1 1 0 1 1
0 0 1 1 1
1 1 1 0 0

 C ′′
3 =


0 1 0 0 0
1 0 0 1 1
0 1 1 1 1
1 0 1 0 0

swap 0 by 1 in 2nd column

Step 2. Permute (i.e., swap) 0 and 1 in second column.

27 39

Symmetries of codes

Example 46

Let us transform C3 = {00000, 01101, 10110, 11011}:

C ′′
3 =


0 1 0 0 0
1 0 0 1 1
0 1 1 1 1
1 0 1 0 0

 C ′′′
3 =


0 1 0 1 0
1 0 0 0 1
0 1 1 0 1
1 0 1 1 0

swap 0 by 1 in 4th column

Step 3. Permute (i.e., swap) 0 and 1 in fourth column.

The codes C3 = {00000, 01101, 10110, 11011} and
C ′′′
3 = {01010, 10001, 01101, 10110} are equivalent.

28 39

Symmetries of codes

Example 47 (Code symmetry)

Again consider C3 = {00000, 01101, 10110, 11011}:

C3 =


0 0 0 0 0
1 1 0 1 1
0 1 1 0 1
1 0 1 1 0


If we now swap the �rst and fourth columns, and then swap the
second and �fth columns, the resulting code will again be C3

(exactly the same code matrix). This transformation is thus a
symmetry.

29 39

Properties of code transformations

Theorem 48 (Number of equivalent codes)

Given an (n,M, d)q-code C, the number of distinct codes equivalent

to C is equal to n!·(q!)n
s(C) , where s(C) denotes the total number of

code symmetries of C.

Proof idea (easier in Year 3 after Group Theory)

The number of permutations (bijections) of a set with n
elements is n!, which is the number of elements of the
symmetric group Sn on n letters.

Thus there are n! permutations of the n columns of C
(transformations of type (a)), and q! permutations of the
symbols of the underlying alphabet of C.

30 39

Properties of code transformations

Theorem 48 (Number of equivalent codes)

Given an (n,M, d)q-code C, the number of distinct codes equivalent

to C is equal to n!·(q!)n
s(C) , where s(C) denotes the total number of

code symmetries of C.

Proof idea (easier in Year 3 after Group Theory)

For each column we can apply those q! permutations of
symbols, hence we can get (q!)n transformations of type (b).

The �nal number of transformations of C has to be divided by
s(C) since symmetries do not change the code.

31 39

Properties of code transformations

De�nition 49 (Isometries)

Given metric spaces X and Y with distance functions dX and dY ,
respectively, an isometry between X and Y is a bijective function
T : X → Y which preserves distances � that is,

dY (T (a), T (b)) = dX(a, b) for all a, b ∈ X.

Example 50

Given an angle θ ∈ [0, 2π), a rotation in R2 about θ is an isometry
from R2 to itself (with respect to the usual Euclidean distance).

[Trivia/reminder: in matrix form, the rotation above is given by
(xy) 7→

(
cos θ − sin θ
sin θ cos θ

)
· (xy) .]

32 39

Properties of code transformations

Proposition 51

Let T : C → C ′ be a code transformation between two codes. Then

T is an isometry (with respect to the Hamming distance).

Proof.

We need only argue that code transformations of types (a) and (b)
do not change the Hamming distance.

A transformation of type (a) permutes columns (say i-th and j-th
columns) of C. Thus they change the i-th and j-th entry of all its
codewords simultaneously. Hence, given a pair of codewords
c1, c2 ∈ C, the number of di�erences between their entries before or
after the transformation remains the same.

33 39

Properties of code transformations

Proposition 51

Let T : C → C ′ be a code transformation between two codes. Then

T is an isometry (with respect to the Hamming distance).

Proof.

A transformation of type (b) permutes simultaneously permutes a
�xed entry of all codewords of C. Thus, this rearrangement of
entries maintains di�erences or equalities between a pair of
codewords in the corresponding position. Therefore the number of
di�erences between their entries before or after the transformation
is the same.

34 39

Properties of code transformations

Corollary 52

If T : C → C is a code symmetry, then T ∈ Isom(C) � the group

of all isometries of C.

Corollary 53 (Equivalence preserves parameters)

If C and C ′ are equivalent codes, then their parameters are the

same.

That is, if C is an (n1,M1, d1)q1-code and if C ′ is an (n2,M2, d2)q2
-code, then n1 = n2, M1 = M2, d1 = d2 and q1 = q2.

Proof.

Code transformations clearly do not change the length of codes nor
their number of elements nor their number of symbols. And by
Proposition 51 they also do not a�ect the Hamming distance,
hence also the minimal distance is preserved.

35 39

Properties of code transformations

Example 54

Consider the binary repetition code C = {000, 111} of length 3,

C =

[
0 0 0
1 1 1

]
.

There are 3! ways of permuting the columns of C, but none of
which results in a new code. Besides these swaps, the code
transformation that simultaneously swaps 0 by 1 in all columns of
C also yields the same code (viewed as a set).
Thus C has 3! · 2 symmetries. By Theorem 48, C has
n!(q!)n

3!2 = 3!23

3!2 = 22 = 4 equivalent codes. These are easy to �nd:

C =

[
0 0 0
1 1 1

]
,

[
0 0 1
1 1 0

]
,

[
0 1 0
1 0 1

]
,

[
0 1 1
1 0 0

]
.

We see they all are (3, 2, 3)2-codes, as predicted by Corollary 53.
36 39

Properties of code transformations

Recall: Fq = {0, 1, 2, . . . , q − 1}.

Lemma 55 (Linear codes contain the zero vector)

Any code C ⊆ Fn
q is equivalent to a code containing the zero

codeword 0 = 00 . . . 0 ∈ Fn
q .

Proof.

Let c = c1 c2 . . . cn be the codeword on the top row of the code
matrix of C. For every i = 1, 2, . . . , n, choose a bijection
σi : Fq → Fq that sends ci to 0. Applying to the i-th column of C
the code transformation of type (b) corresponding to the
permutation σi changes the i-th entry of c into zero. Doing those n
transformations successively for each i = 1, 2, . . . , n eventually
turns c into 0.

37 39

Properties of code transformations

Recall: Fq = {0, 1, 2, . . . , q − 1}.

Corollary 56 (SPBT over Fq)

If C is an (n,M, d)q code over the alphabet Fq, then

M ≤ qn

vol(Sε(d)(0))
.

Proof.

Combine the SPBT with Lemma 55 and Corollary 53.

38 39

Next lecture

Next time...

Strategies to (re)design codes;

Modular arithmetic.

I wish you a great week!

39 / 39

	Today
	Last time
	More geometry: Solid spheres and symmetries
	Other `geometric' aspects: Symmetries of codes

