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Today



Week 3: Goals

Week 3

1. Lecture 1: More geometry: solid spheres and symmetries.

2. Lecture 2: (Re)design strategies.
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Last time



Recalling: Geometry of codes

De�nition 23 (Solid spheres)

Given a metric space X with distance function d and a positive
real number ε ∈ R>0, the solid sphere (or ball) or radius ε and
centre p ∈ X is the set de�ned by

Sε(p) = {x ∈ X | d(p, x) ≤ ε}.

In case X is �nite, the volume of the (solid) sphere Sε(p), is its
number of elements vol(Sε(p)) := #Sε(p).

Examples

9 / 51
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Recalling: The Distance Theorem

Distance Theorem (22)

Let C be a code with minimal distance dmin(C). Then the
following statements hold:

1. If t ∈ N and dmin(C) ≥ t+ 1, then C detects t errors.

2. If k ∈ N and dmin(C) ≥ 2k + 1, then C corrects k errors.

Corollary (27) to the Distance Theorem

Let C be a code and write d for dmin(C). Then C can detect up to
d− 1 errors and correct up to ⌊d−1

2 ⌋ errors, where ⌊ ⌋ : R → Z
denotes the integer part function: ⌊r⌋ = max{z ∈ Z | z ≤ r}.
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Recalling: Parameters

De�nition 30 (Parameters of a code)

Let n, M , d and q be natural numbers. A code C called an
(n,M, d)q-code when

the underlying alphabet used for C has q symbols,

each codeword in C has length n,

C itself has M codewords in total (i.e., M = #C), and

d is its minimal distance (i.e., d = dmin(C)).

The numbers n, M , d and q are called parameters of C.
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Recalling: Main Problem

Main Problem of Coding Theory

Given a q-ary alphabet, a length n, and a desired minimal distance
d, design an (n,M, d)q-code for which its total number of
codewords M is as large as possible.

Notation

Given q, n, and d as above, we write Mq(n, d) for the largest
possible such M .

Written in mathematical symbols,
Mq(n, d) := max{M ∈ N | M = #C for some (n,M, d)q-code C}.
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More geometry: Solid spheres

and symmetries



On the `shape' of spheres

Motivating question: How `big' are spheres?

Example: Euclidean solid spheres

x

y

p
ε

The (usual) volume of a solid sphere Sε(p) of radius ε in
n-dimensional Euclidean space Rn has a formula:

vol(Sε(p)) =
πn/2

Γ(n2 + 1)
εn,

where Γ( ) is a special function that goes Γ(12 + 1) =
√
π
2 ,

Γ(22 + 1) = 1, Γ(32 + 1) = 3
√
π

4 , . . .. For instance, on the plane:
vol(Sε(p)) = πε2. In three dimensions: vol(Sε(p)) =

4
3πε

3.
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On the `shape' of spheres

Is there a closed formula for vol(Sε(w)) = #Sε(w) in spaces of
words with the Hamming distance?

Lemma 35 (Volume of spheres in spaces of words)

Let A be a q-ary alphabet and let n ∈ N. Consider the space of

words An of length n as a metric space with the Hamming distance.

Then, given any word w ∈ An and integer radius ε ∈ N, the solid

sphere Sε(w) has volume vol(Sε(w)) = #Sε(w) given by the formula

#Sε(w) =

(
n

0

)
+

(
n

1

)
(q − 1) +

(
n

2

)
(q − 1)2 + . . .+

(
n

ε

)
(q − 1)ε

=

ε∑
i=0

(
n

i

)
(q − 1)i.
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On the `shape' of spheres

Proof.

Goal: check that #Sε(w) =
∑ε

i=0

(
n
i

)
(q − 1)i.

Recall: Sε(w) = {x ∈ An | d(w, x) ≤ ε}. So we need only count how
many words are at Hamming distance i to w for each i from 0 to ε.

A word at Hamming distance i to w di�ers from w in exactly i
positions.

There are
(
n
i

)
ways to choose those di�ering positions.

At every such position, we can use up to q − 1 other symbols.

Thus changing each symbol in i chosen positions can be done
in (q − 1)i ways.

Altogether, we �nd exactly
(
n
i

)
(q − 1)i words at distance

exactly i from w.
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On the `shape' of spheres

Proof.

Goal: check that #Sε(w) =
∑ε

i=0

(
n
i

)
(q − 1)i.

Recall: Sε(w) = {x ∈ An | d(w, x) ≤ ε}. So we need only count how
many words are at Hamming distance i to w for each i from 0 to ε.

Adding everything up gives

#Sε(w) =

(
n

0

)
+

(
n

1

)
(q − 1) +

(
n

2

)
(q − 1)2 + . . .+

(
n

ε

)
(q − 1)ε

=

ε∑
i=0

(
n

i

)
(q − 1)i,

as claimed.
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On the `shape' of spheres

Corollary 36 (Spheres `look the same' everywhere)

Let A be a q-ary alphabet and let n ∈ N. Consider the space of

words An of length n as a metric space with the Hamming distance.

Then, given any pair of words v, w ∈ An and the same integer

radius ε ∈ N, the solid spheres Sε(w) and Sε(v) have exactly the

same number of elements. In symbols,

vol(Sε(w)) = vol(Sε(v)) ∀w, v ∈ An.

Proof.

The formula from Lemma 35 tells us that those volumes only
depend on the parameters n, q and on the radius ε, but not on the
centres of the spheres. Thus the values are equal.
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On the `shape' of spheres

Pictorial example

Identify S1(002) below within F3
3:

000

001

002

010

011

012

020

021

022

100

101

102

110

111

112

120

121

122

200

201

202

210

211

212

220

221

222
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Another application of geometry to codes

Recall: The Main Problem of Coding Theory is, given parameters n
(length), d (minimal distance) and q (number of symbols), to
design (n,M, d)q-codes where M (total number of codewords) is as
large as possible. Using spheres we get the following bound for M :

Theorem 37 (Sphere Packing Bound (a.k.a. Hamming bound))

Let C be an (n,M, d)q-code over a q-ary alphabet A, let ε(d) be the

value ε(d) := ⌊d−1
2 ⌋, and let c ∈ C be any codeword. Then the

parameter M = #C is bounded from above as follows:

M ≤ qn

vol(Sε(d)(c))
=

qn

#Sε(d)(c)
,

where the volume vol(Sε(d)(c)) = #Sε(d)(c) is taken in the space An

(with the Hamming distance).
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Consequence of the Sphere Packing Bound

Recall: Mq(n, d) = largest possible number of codewords in a code
of length n with minimal distance d and over a q-ary alphabet.
Written in mathematical symbols,
Mq(n, d) := max{M ∈ N | M = #C for some (n,M, d)q-code C}.

Corollary 38

Writing ε(d) = ⌊d−1
2 ⌋, it holds

Mq(n, d) ≤
qnε(d)∑

i=0

(
n

i

)
(q − 1)i

 .

Proof.

Follows by combining Corollary 36 and Lemma 35 with the Sphere
Packing Bound Theorem.
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Proof of Sphere Packing Bound

Proof of the Sphere Backing Bound Theorem.

Along the proof of the Distance Theorem, we have seen (cf.
Lemma 25) that for ε = ε(d) = ⌊d−1

2 ⌋ and any two codewords
v, w ∈ C, the solid spheres Sε(d)(v) and Sε(d)(w) are disjoint.

Hence, counting the elements of the union
⋃
w∈C

Sε(d)(w) ⊆ An,

we do not double count any elements of An. Therefore∑
w∈C

vol(Sε(d)(w)) =
∑
w∈C

#Sε(d)(w) ≤ #An = qn.

By Corollary 36 and Lemma 35, the spheres Sε(d)(w) have the
same number of elements. Thus, choosing c ∈ C, the sum

above becomes
∑
w∈C

#Sε(d)(w) =
∑
w∈C

#Sε(d)(c) =

#Sε(d)(c) ·
∑
w∈C

1 = #Sε(d)(c) ·#C = M · vol(Sε(d)(c)).
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Applying the Sphere Packing Bound

The Sphere Packing Bound Theorem (SPBT) says: q-ary codes of
given length n and desired minimal distance d cannot be `too big'.

Example 39

Let C be a (5,M, 3)2-code. So q = 2, n = 5 and d = 3. Thus
ε(d) = ε(3) = ⌊3−1

2 ⌋ = ⌊22⌋ = 1. By Lemma 35, the volume of a
solid sphere of radius ε(d) = 1 around any codeword c ∈ C is

vol(Sε(d)(c)) =

ε(d)∑
i=0

(
n

i

)
(q − 1)i =

1∑
i=0

(
5

i

)
(2− 1)i

=

1∑
i=0

(
5

i

)
· 1 =

(
5

0

)
+

(
5

1

)
= 1 + 5 = 6.

By the SPBT, M ≤ 25

6 = 32
6 = 6.4, so #C = M ≤ 6 (because #C

is an integer).
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Applying the Sphere Packing Bound

The Sphere Packing Bound Theorem (SPBT) says: q-ary codes of
given length n and desired minimal distance d cannot be `too big'.

Example 39

Let C be a (6,M, 1)11-code. So q = 11, n = 6 and d = 1. Thus
ε(d) = ε(1) = ⌊1−1

2 ⌋ = 0. The volume of a solid sphere of radius 0
around a codeword c ∈ C is 1 since this sphere only contains the
centre.
By the SPBT, #C = M ≤ 116

1 = 116, which is quite big!

State of knowledge: if we try to design an (n,M, d)q-code C, then
C has at most qn/vol(Sε(d)(c)) codewords (by the SPBT). Can C

have exactly qn

vol(Sε(d)(c))
elements?
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SPBT & `nice' codes

Question: Can an (n,M, d)q-code have
qn

vol(Sε(d)(c))
codewords?

Answer

Sometimes yes, but not always!

`Sometimes': A = F3 = {0, 1, 2}, C = F2
3. This is a

(2, 9, 1)3-code. So ε(d) = ε(1) = ⌊1−1
2 ⌋ = 0, thus

vol(Sε(d)(c)) = 1 always, and qn = 32 = 9. Hence, in this case,

#C = M = 9 and qn

vol(Sε(d)(c))
= 9

1 = 9 = M⇝ equality!

`Not always': Consider a (2, 5, 2)5-code C, so M = 5 and
ε(d) = ε(2) = ⌊2−1

2 ⌋ = 0. The upper bound from the SPBT is
qn

vol(Sε(d)(c))
= 52

1 = 25, which is strictly larger than

#C = M = 5⇝ strict inequality M< qn

vol(Sε(d)(c))
.
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SPBT & `nice' codes

If the number of elements of a code matches the upper bound
qn

vol(Sε(d)(c))
of the SPBT, this code deserves a name!

De�nition 40 (Perfect codes)

An (n,M, d)q-code C is said to be perfect if

M =
qn

vol(Sε(d)(c))

for some codeword c ∈ C, where ε(d) = ⌊d−1
2 ⌋.

Example 41

The `easy' code C = An over the alphabet A is perfect.

Hamming's original code (cf. Practicals, Week 2) is perfect.
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SPBT & `nice' codes

Theorem 42 (Properties of perfect codes)

Let C be a perfect (n,M, d)q-code over the alphabet A. Then the

following hold:

1. There exists an integer k ≥ 0 such that 2k + 1 = d and so that

An is a disjoint union of the solid spheres Sk(w) with w

ranging over C. In symbols, An =
⊔
w∈C

Sk(c).

2. The minimal distance d cannot be even.

3. The code C corrects k errors.

Proof.

Note that, once we prove part (1), the other parts follow: (1)
implies (2) immediately because d = 2k + 1, an odd number. And
(1) implies (3) by the Distance Theorem.
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SPBT & `nice' codes

Proof of part (1) of Theorem 42.

Set k = ε(d) = ⌊d−1
2 ⌋, which is a non-negative integer. As seen in

the proof of the SPBT, we have⋃
w∈C

Sk(w) ⊆ An,

and the union on the left hand side is disjoint by Lemma 25.
Now, the right hand side has qn elements. The left hand side has
exactly

∑
w∈C #Sk(w) elements, which is the same as

M · vol(Sε(d)(c)) as seen in the proof of the SPBT. But by
De�nition 40, qn = M · vol(Sε(d)(c)) =

∑
w∈C #Sk(w). Therefore

every element of An must be contained in one of the solid spheres
Sk(w), and we are not counting elements multiple times. In other
words,

⊔
w∈C Sk(w) = An.
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Other `geometric' aspects:

Symmetries of codes



Symmetries

In maths (and sciences that use mathematics), it is quite useful to
understand the symmetries of objects: among many other useful
consequences, knowing the symmetries often allows us to
drastically reduce the complexity of problems we are investigating.

Broad informal `de�nition'

If O is a set that represents a mathematical object (for example, a
vector space, a �nite set, a polygon, a manifold, a �eld, ...), then
the symmetries of O are a (sub)set of bijective functions from O
to itself that preserve certain properties de�ning the object O.

This set of symmetries is sometimes denoted by Aut(O).
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Symmetries

Examples

Year 1: If O is a vector space, then Aut(O) is the set of
bijective linear transformations of O.

Year 2: If O = a regular square, then Aut(O) = D8, the
dihedral group of order 8.

Now: If O is a metric space, then Aut(O) is the set of
isometries of O, i.e., those bijections that preserve distances.

Year 3: No matter what O is, its symmetries Aut(O) always
form a group! (The group operation is the composition of
functions.)

Year 4: If O is a di�erentiable manifold (for example Rn), then
Aut(O) is the set of di�eomorphisms of O, i.e., bijective
di�erentiable maps whose derivatives have nonzero
determinant.
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Symmetries of codes

Here, we shall de�ne symmetries of a code to �nd out about codes
which `work exactly the same'. Before, we need some terminology.

De�nition 43 (Code matrix)

Given an (n,M, d)q-code C, its (full) code matrix � also written C
� is the (M × n)-matrix created by listing all the codewords of C
in rows.

Example 44

For C3 = {00000, 01101, 10110, 11011}, the code from Example 5
(�rst lecture), its code matrix is the four-by-�ve matrix

C3 =


0 0 0 0 0
1 1 0 1 1
0 1 1 0 1
1 0 1 1 0

 .
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Symmetries of codes

De�nition 45 (Transformations, equivalence, and symmetries)

Given a code C ⊆ An, represented as its code matrix, a code
transformation applied to C is a (�nite) combination of operations
of the following types:

(a) permuting the columns of the code matrix C;

(b) permuting the symbols appearing in a given column of the
code matrix C.

After transforming a code C ⊆ An, we always obtain another code
C ′ ⊆ An, and we say that the resulting code C ′ and the original
code C are equivalent.

We call a code transformation a code symmetry (or code
automorphism) if C ′ = C. (That is, if the code transformation does
not result in a di�erent code.)
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Symmetries of codes

Example 46

Let us transform C3 = {00000, 01101, 10110, 11011}:

C3 =


0 0 0 0 0
1 1 0 1 1
0 1 1 0 1
1 0 1 1 0


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Symmetries of codes

Example 46

Let us transform C3 = {00000, 01101, 10110, 11011}:

C3 =


0 0 0 0 0
1 1 0 1 1
0 1 1 0 1
1 0 1 1 0

 C ′
3 =


0 0 0 0 0
1 1 0 1 1
0 0 1 1 1
1 1 1 0 0

2nd ↔ 4th columns

Step 1. First swap the second and fourth columns.
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Symmetries of codes

Example 46

Let us transform C3 = {00000, 01101, 10110, 11011}:

C ′
3 =


0 0 0 0 0
1 1 0 1 1
0 0 1 1 1
1 1 1 0 0

 C ′′
3 =


0 1 0 0 0
1 0 0 1 1
0 1 1 1 1
1 0 1 0 0

swap 0 by 1 in 2nd column

Step 2. Permute (i.e., swap) 0 and 1 in second column.
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Symmetries of codes

Example 46

Let us transform C3 = {00000, 01101, 10110, 11011}:

C ′′
3 =


0 1 0 0 0
1 0 0 1 1
0 1 1 1 1
1 0 1 0 0

 C ′′′
3 =


0 1 0 1 0
1 0 0 0 1
0 1 1 0 1
1 0 1 1 0

swap 0 by 1 in 4th column

Step 3. Permute (i.e., swap) 0 and 1 in fourth column.

The codes C3 = {00000, 01101, 10110, 11011} and
C ′′′
3 = {01010, 10001, 01101, 10110} are equivalent.
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Symmetries of codes

Example 47 (Code symmetry)

Again consider C3 = {00000, 01101, 10110, 11011}:

C3 =


0 0 0 0 0
1 1 0 1 1
0 1 1 0 1
1 0 1 1 0


If we now swap the �rst and fourth columns, and then swap the
second and �fth columns, the resulting code will again be C3

(exactly the same code matrix). This transformation is thus a
symmetry.
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Properties of code transformations

Theorem 48 (Number of equivalent codes)

Given an (n,M, d)q-code C, the number of distinct codes equivalent

to C is equal to n!·(q!)n
s(C) , where s(C) denotes the total number of

code symmetries of C.

Proof idea (easier in Year 3 after Group Theory)

The number of permutations (bijections) of a set with n
elements is n!, which is the number of elements of the
symmetric group Sn on n letters.

Thus there are n! permutations of the n columns of C
(transformations of type (a)), and q! permutations of the
symbols of the underlying alphabet of C.
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Properties of code transformations

Theorem 48 (Number of equivalent codes)

Given an (n,M, d)q-code C, the number of distinct codes equivalent

to C is equal to n!·(q!)n
s(C) , where s(C) denotes the total number of

code symmetries of C.

Proof idea (easier in Year 3 after Group Theory)

For each column we can apply those q! permutations of
symbols, hence we can get (q!)n transformations of type (b).

The �nal number of transformations of C has to be divided by
s(C) since symmetries do not change the code.
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Properties of code transformations

De�nition 49 (Isometries)

Given metric spaces X and Y with distance functions dX and dY ,
respectively, an isometry between X and Y is a bijective function
T : X → Y which preserves distances � that is,

dY (T (a), T (b)) = dX(a, b) for all a, b ∈ X.

Example 50

Given an angle θ ∈ [0, 2π), a rotation in R2 about θ is an isometry
from R2 to itself (with respect to the usual Euclidean distance).

[Trivia/reminder: in matrix form, the rotation above is given by
( xy ) 7→

(
cos θ − sin θ
sin θ cos θ

)
· ( xy ) .]
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Properties of code transformations

Proposition 51

Let T : C → C ′ be a code transformation between two codes. Then

T is an isometry (with respect to the Hamming distance).

Proof.

We need only argue that code transformations of types (a) and (b)
do not change the Hamming distance.

A transformation of type (a) permutes columns (say i-th and j-th
columns) of C. Thus they change the i-th and j-th entry of all its
codewords simultaneously. Hence, given a pair of codewords
c1, c2 ∈ C, the number of di�erences between their entries before or
after the transformation remains the same.
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Properties of code transformations

Proposition 51

Let T : C → C ′ be a code transformation between two codes. Then

T is an isometry (with respect to the Hamming distance).

Proof.

A transformation of type (b) permutes simultaneously permutes a
�xed entry of all codewords of C. Thus, this rearrangement of
entries maintains di�erences or equalities between a pair of
codewords in the corresponding position. Therefore the number of
di�erences between their entries before or after the transformation
is the same.
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Properties of code transformations

Corollary 52

If T : C → C is a code symmetry, then T ∈ Isom(C) � the group

of all isometries of C.

Corollary 53 (Equivalence preserves parameters)

If C and C ′ are equivalent codes, then their parameters are the

same.

That is, if C is an (n1,M1, d1)q1-code and if C ′ is an (n2,M2, d2)q2
-code, then n1 = n2, M1 = M2, d1 = d2 and q1 = q2.

Proof.

Code transformations clearly do not change the length of codes nor
their number of elements nor their number of symbols. And by
Proposition 51 they also do not a�ect the Hamming distance,
hence also the minimal distance is preserved.
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Properties of code transformations

Example 54

Consider the binary repetition code C = {000, 111} of length 3,

C =

[
0 0 0
1 1 1

]
.

There are 3! ways of permuting the columns of C, but none of
which results in a new code. Besides these swaps, the code
transformation that simultaneously swaps 0 by 1 in all columns of
C also yields the same code (viewed as a set).
Thus C has 3! · 2 symmetries. By Theorem 48, C has
n!(q!)n

3!2 = 3!23

3!2 = 22 = 4 equivalent codes. These are easy to �nd:

C =

[
0 0 0
1 1 1

]
,

[
0 0 1
1 1 0

]
,

[
0 1 0
1 0 1

]
,

[
0 1 1
1 0 0

]
.

We see they all are (3, 2, 3)2-codes, as predicted by Corollary 53.
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Properties of code transformations

Recall: Fq = {0, 1, 2, . . . , q − 1}.

Lemma 55 (Linear codes contain the zero vector)

Any code C ⊆ Fn
q is equivalent to a code containing the zero

codeword 0 = 00 . . . 0 ∈ Fn
q .

Proof.

Let c = c1 c2 . . . cn be the codeword on the top row of the code
matrix of C. For every i = 1, 2, . . . , n, choose a bijection
σi : Fq → Fq that sends ci to 0. Applying to the i-th column of C
the code transformation of type (b) corresponding to the
permutation σi changes the i-th entry of c into zero. Doing those n
transformations successively for each i = 1, 2, . . . , n eventually
turns c into 0.
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Properties of code transformations

Recall: Fq = {0, 1, 2, . . . , q − 1}.

Corollary 56 (SPBT over Fq)

If C is an (n,M, d)q code over the alphabet Fq, then

M ≤ qn

vol(Sε(d)(0))
.

Proof.

Combine the SPBT with Lemma 55 and Corollary 53.
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Next lecture

Next time...

Strategies to (re)design codes;

Modular arithmetic.

I wish you a great week!
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